$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

번호판 인식은 번호판 영역 추출 세그멘테이션, 인식의 3단계로 나눈다. 일반적으로 번호판 영역을 검출하는 과정에서 여러 후보영역이 추출되는데 검증 과정을 통해 그 중 하나를 선택한다. 따라서 적절한 검증 방법은 번호판 인식의 신뢰성을 높히기 위해 필수적이다. 본 논문은 다층 신경망에 사용하는 대표적인 알고리즘 중 하나인 역전과 알고리즘을 이용하여 번호판 후보 영역을 검증하는 방법을 제시한다. 신경망을 통한 학습을 위해 우선 적절한 훈련 이미지를 수집해야한다. 특히 번호판 이미지가 아닌 훈련 데이터를 수집하는 것은 어려운 문제이다. 본 논문에서는 효과석인 훈련 데이터 수집의 방법과 특징 벡터 생성에 대하여 제안하고 이 방법의 효용성을 실험을 통하여 검증한다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일