$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

퍼지 추론을 이용한 소수 문서의 대표 키워드 추출에 대한 유용성 평가

Evaluation on the usefulness of Representative Keyword Extraction from Few Documents through Fuzzy Inference

초록

본 논문은 퍼지 추론을 이용하여 소수문서로부터의 대표 용어들을 추출하고 가중치를 부여한 기존 방법의 유용성을 평가하고자 GIS (Generalized Instance Set) 알고리즘에 이를 적용시켜 보았다. GIS 는 학습 문서 집합에 대한 플러스터링 과정을 통해 문서 그룹들을 생성하고 이들에 대한 선형 분류기들을 유도한 뒤 k-NN 알고리즘을 적용하는 방법이다. GIS의 일반화(generalization) 과정에 Rocchio, Widrow-Hoff 및 퍼지 추론을 이용한 방법을 적용시켜 문서 분류 성능을 비교하였다. 긍정적 문서 집합에 대한 실험에서 비교적 우수한 성능 향상을 보여줌으로써 퍼지 추론을 이용한 방법의 유용성을 확인 할 수 있었다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일