$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

강화학습 기반 사용자 프로파일 학습

Learning User Profile with Reinforcement Learning

초록

정보검색 태스크에서 사용자 모델링의 목적은 관련정보 검색을 용이하게 해주기 위하여 사용자의 관심도 또는 필요정보의 모델을 학습하는 것으로 시간적인 속성(temporal characteristics)을 가지며 관심 이동을 적절하게 반영하여야 한다. 강화학습은 정답이 주어지지 않고 사용자의 평가만이 수치적으로 주어지는 환경에서 평가를 최대화 한다는 목표를 가지므로 사용자 프로파일 학습에 적용할 수 있다. 본 논문에서는 사용자가 문서에 대해 행하는 일련의 행위를 평가값으로 하여 사용자가 선호하는 용어를 추출한 후, 사용자 프로파일을 강화학습 알고리즘으로 학습하는 방법을 제안한다. 사용자의 선호도에 적응하는 능력을 유지하기 위하여 지역 최대값들을 피할 수 있고, 가장 좋은 장기간 최적정책에 수렴하는 R-Learning을 적용한다. R-learning은 할인된 보상값의 최적화보다 평균 보상값을 최적화하기 때문에 장기적인 사용자 모델링에 적합하다는 것을 제시한다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일