$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

기존의 홍채인식 시스템에서 사용된 홍채영역추출 방법의 경우 불필요한 정보를 포함하여 추출하기 때문에 효과적인 특징추출이 어렵게 된다. 본 논문에서는 홍채영역을 효율적으로 추출하기 위한 새로운 접근방법으로서, 통계 정보를 이용하여 홍채영역을 추출하는 방법을 제안한다. 획득된 그레이레벨의 눈 영상에서 홍채영역의 경우 다른 영역보다 픽셀들간의 값의 변화율이 크기 때문에 간단한 영상처리를 통해 홍채영역이라 판단되는 영역을 강조한 뒤 그 값들의 통계정보를 이용한다. 본 논문에서 제안하는 방법은 실세계의 눈 영상을 이용한 실험을 통하여 그 성능을 검증하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일