$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

본 논문에서는 복잡 배경을 포함한 비디오 영상에서 객체 변형 및 겹침에 강건한 칸투어 추적 방법을 제안한다. 복잡 배경에서의 칸투어 추출 문제를 해결하기 위해 텍스처 분석과 노이즈 필터링 과정을 거치며, 보다 객체 원형에 가까운 칸투어 추출을 위해 각 칸투어 포인터 간 최소 경로 측정 알고리즘을 적용한다. 객체 추적 방법에 있어서 추출된 칸투어 정보는 연속된 프레임 상에서 객체 움직임이 발생했을 때 추적 위치를 판별하기 위한 모션 벡터로 사용되며, 시점에 따라 형태가 변하는 상황을 포함한 팬, 틸트, 줌에도 안정적 추적이 가능하게 하기 위해, 폐곡선을 이루는 각 칸투어 포인터들의 움직임 벡터와 칸투어내 면적의 변화에서 측정되는 이동도 측정을 통하여 객체 위치 추적을 가능하게 하였다. 또한 매 추적 과정을 진행함에 있어서 다른 객체의 겹침 및 모양변형 발생여부 검사과정을 통하여, 안정적인 추적이 가능하게 하였다. 본 논문에서 제안한 방법의 성능을 검증하기 위해 다양한 배경을 갖는 복잡 배경에 존재하는 비정형 객체를 대상으로 실험하였고, 제안된 방법이 효율적임을 확인할 수 있었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일