$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

저차원 집계 테이블들을 사용한 고차원 데이터의 온라인 분석

Analysis of High Dimensional Data using Low Dimensional Summary Tables

초록

다차원 데이터를 온라인으로 분석하기 위해서는 사전에 집계 테이블들을 계산해 둔다. 대용량 고차원 데이터의 경우는 집계 테이블의 분량이 천문학적으로 방대하기 때문에 사전 집계 계산이 현실적으로 불가능한 경우가 많다. 고차원 데이터 처리에 관한 연구로는 데이터의 차원 수를 감소시키거나 인덱스를 압축하여 질의처리 시간을 단축하려는 연구를 들 수 있는데, 이러한 방법들은 고차원 데이터의 온라인 분석시에 발생하는 데이터 폭발 현상을 근본적으로 해결하지는 못한다. 본 연구에서는 고차원 데이터가 분석될 때 실제로 저차원 집계 테이블들이 주로 사용된다는 점에 착안하여 데이터 폭발 현상을 감소시키면서 데이터를 분석하는 방안을 제시한다 이 방법은 사전 집계 연산을 할 때 크기가 방대한 고차원 집계 테이블들의 생성을 생략하고, 3-6차원 또는 그 이하 차원의 집계 테이블들만을 고속으로 동시에 생성하는 방법이다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일