$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

다계층 메타데이타 기반 이미지 내용검색 시스템 설계

Design of Content-based Image Retrival System using Multilevel Metadata

초록

대부분의 내용기반 이미지 검색 시스템은 이미지의 특징 벡터인 색상, 모양, 그리고 질감에 의해서 유사한 이미지를 검색하는 기법을 제공하고 있다. 최근 이러한 내용기반 이미지 검색 기술은 의료 영상 이미지와 같은 다양한 분야에 적용되고 있으며, 이에 따라서 의료 이미지를 분석하여 저장, 검색하기 위한 데이터베이스 시스템이 증가하고 있다. 그러나, 대량의 이미지로부터 원하는 이미지를 검색하기 위해서는 이미지의 메타데이타를 효율적으로 표현해야 하며, 의미성과 이미지의 특징 데이터를 통합적으로 저장 관리 할 수 있는 이미지 데이터베이스를 설계하고 구축해야만 한다. 본 논문에서는 기존의 내용기반 이미지 검색 기법을 살펴보고. 이미지를 내용기반으로 분류하고 저장할 수 있는 데이터베이스 시스템을 설계하여 효율적인 의미기반 검색을 지원말 수 있는 모델을 제시한다. 다계층 메타데이타 레이어 구조로 이미지에 대한 개념 지식 모델을 표현하고, 이미지내의 객체를 메타데이타로 표현하여 분류할 수 있는 모델을 제안한다. 또한, 이미지 내용검색을 지원하기 위한 시스템 구조를 설계하고, 메타데이타가 저장되기 위한 관계형 모델을 스타 스키마의 형태로 제시한다. 제안된 방법은 의미적인 이미지 내용 검색 방법의 지원에 활용될 수 있다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일