$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

에이전트의 최적 행동 생성을 위한 행동선택 네트워크의 계획 기능

Planning Capability of Action Selection Network for Generating Optimal Behaviors of Agent

초록

최근 빠른 시간에 행동을 표현할 수 있는 장점을 가진 반응형 시스템과 최적화된 시퀀스를 생성할 수 있는 계획에 기반만 시스템을 통합하기 위한 하이브리드 시스템의 연구가 활발히 진행되고 있다. 행동 네트워크 구조는 센서와 목적에 대한 외부연결과 행동들 사이의 내부연결을 통해 수동적으로 설계되지만. 자동적으로 행동을 생성할 수 있고 복잡한 문제에 적용할 수 있는 장점이 있다. 본 논문에서는 이동 에이전트의 행동을 생성하기 위한 최적화된 방법을 찾는 문제에 대해 이 행동 네트워크에 계획 기능을 부가함으로 행동 시퀀스를 최적화하는 방법을 제안한다. 행동 네트워크는 입력된 정보와 목적 정보를 가지고 다음에 수행할 행동을 선택하여 각 상황에 가장 높은 우선순위를 가지는 행동만을 선택한다. 이 행동 네트워크에서 선택된 모든 행동들을 몇 단계 앞서 수행시켜 가장 좋은 결과를 가져올 행동으로 다음의 행동을 선택하는 방법을 통하여 복잡하고 불확실한 환경에서 주어진 목표를 달성하기 위한 전체적인 최적 행동 시퀀스를 생성할 수 있다. Khepera 이동 로봇을 이용한 실험을 통해 제안한 행동 네트워크에 계획을 이용한 방법이 행동 네트워크 구조에서보다 더 적은 행동 시퀀스로 목적을 달성함을 알 수 있었다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일