$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

기계학습과 사전을 이용한 개체명 세분화

Fine Grained Classification of Named Entities Using Machine Learning and Dictionary

초록

개체명 인식은 효과적인 정보추출 시스템을 구축하기 위해 반드시 선행되어야 하는 작업이다. 지금까지의 개체명 인식에 관한 연구는 인명이나 조직, 장소와 같은 일반적인 개체명 인식 작업이 대부분이었다. 그러나, 효과적인 정보추출을 위해서는 이런 일반적인 개체명들을 더욱 세분화할 필요가 있다. 본 논문에서는 SVM기반 기계학습법과 기구축된 사전과의 편집거리 비교법을 이용하여 개체명을 세분화하는 방법을 제시한다. 실험은 개체명과 세분화된 범주가 부착된 공연 관련 문서 100개 중 80개는 학습집합, 20개는 실험집합으로 사용하였고 성능 평가 척도는 정확도(accuracy)를 이용해 개별적으로 평가하였다. 실험 결과 기계학습법과 사전을 이용한 방법을 결합한 모델이 가장 좋은 성능(정확도 72.91%)을 보였다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일