$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

다중데이터베이스 마이닝에서 가중치 거리를 이용한 클러스터링

A Weight Distance-based Clustering for MultiDatabase Mining

초록

다중데이터베이스 마이닝에서 하나의 데이터 집합을 형성하는 작업은 많은 부하가 따른다. 그러므로, 본 논문에서는, 가중치 거리를 이용한 클러스터링을 통해 관련성이 높은 데이터베이스를 식별하는 기법을 제안한다. 제안한 기법은 빈발한 항목으로 구성된 데이터 집합을 생성하여 데이터베이스 사이의 유사성과 거리를 측정하고 데이터베이스간의 거리에 대한 식별성을 향상시키기 위하여 최다 빈발항목에 대한 비교 연산을 통해 가중치를 산출한다. 그리고 성능평가를 통하여 제안한 기법이 Ideal&Goodness 기법보다 다중데이터베이스의 트랜잭션 데이터베이스에 대한 식별 능력이 우수함을 알 수 있었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일