$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

거리 히스토그램을 이용한 특성 추출 기법

Feature Selection by Using Distance Histogram

초록

특성 추출은dimensionality reduction technique로서 잡음을 제거하기 위해 사용되는 중요한 전처리 방식이다. 이러한 과정을 통해 데이터의 크기를 줄일 수 있으며 학습의 정확성 및 이해도를 높일 수 있다. Classification에 사용되는 다양한 특성 추출방식들이 존재하는 반면에 클러스터링에 적용될 수 있는 방식들은 양적으로도 많이 부족하며 존재하는 방식들도 대부분 사용되는 클러스터링 알고리즘 자체에 의존적인 실세계 어플리케이션에는 적용하기 부적합한 Wrapper 방식을 도입하고 있다. 본 논문에서는 클러스터링 알고리즘으로부터 독립적인 필터 솔루션(filter solution)을 제안하였다. 이 방식은 클러스터를 가진 데이터와 가지지 않고 있는 데이터 사이의 point-to-point 거리 히스토그램의 차이에 기반하고 있다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일