$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

매트릭스를 이용한 빈발 항목집합 생성 알고리즘

Generation Algorithm of Frequent Itemsets using Matrix

초록

대용량의 데이터베이스에서 최소지지도를 만족하는 항목들의 집합을 빈발 항목집합이라고 한다. 이전에 연구된 대부분의 빈발 항목집합 생성 알고리즘들은 후보 항목집합들을 생성하고 이들 중에서 조건을 만족하는 빈발 항목집합들을 생성하는 과정을 수행하였다. 그러나 이러한 알고리즘들은 모든 k(k$\geq$1)-빈발 항목집합들을 생성하기까지 k를 하나씩 증가하면서 반복적으로 수행되기 때문에 많은 컴퓨팅 시간을 필요로 한다. 본 논문에서는 후보 항목집합들을 생성하지 않고 빈발 항목집합들을 생성할 수 있는 DFG 알고리즘을 제안한다. 각각의 k-빈발 항목집합들에는 데이터베이스의 모든 정보들이 포함되어 있고 하나의 빈발 항목집합은 한 트랜잭션에 존재한다. 본 논문에서는 이러한 성질을 이용하여 먼저 2-빈발 항목집합들을 생성한다. 그리고 2-빈발 항목집합들에 존재하는 한 항목과 나머지 항목들에 대한 매트릭스를 구성하여 최소지지도를 만족하는 빈발 항목집합들을 생성하게 된다. 제안하는 알고리즘은 불필요한 후보 항목집합들을 생성하지 않고 한 번의 데이터베이스 스캔만으로 빈발 항목집합들을 생성할 수 있다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일