$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

로컬영역에서 다중 특징을 이용한 물체인식

Object Recognition using Multiple Local Features

초록

본 논문은 향상된 Scale Invariant Feature Transform (SIFT) 기법과 이로부터 얻어진 로컬 특징 영역에서 다중특징을 이용한 물체인식 방법에 대하여 논하였다. SIFT 기법 [1]은 물체의 크기. 회전. 3차원 좌표변환에 강인한 특성을 갖는다. 이 기법에서는 크기가 다른 가우시안 (Gaussian) 함수를 적용한 영상들의 차이에서의 최대 및 최소값이 특징점으로 결정된다. 하지만 SIFT 알고리듬의 특성상, 인식되어야 될 물체의 비교적 큰 크기 변화, 중요도가 낮은 특징점들의 추출, 그리고 서로 다른 물체에서 추출된 유사한 특징벡터등이 인식 시스템의 신뢰도를 저하 시킬 수 있다. 이에 대응방안으로, 본 논문에서는 상대적으로 낮은 인식정보를 갖는 추출된 특징점을 제거하기 위한 기법과 서로 다른 물체에서 생성된 유사 특징벡터의 구분을 위한 특징점에서의 방위 (orientation) 비교법 및 색차 (chrominance) 정보를 사용에 대하여 기술하였다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일