$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

유전자 발현 데이터를 이용한 암의 클래스 예측을 위한 퍼지 클러스터링 알고리즘

Fuzzy Clustering Algorithm to Predict Cancer Class Using Gene Expression Data

초록

암의 치료법은 같은 종류의 암이라 해도 그 하부 클래스에 따라 매우 다르기 때문에 암의 클래스를 예측하는 것은 그 정확한 치료를 위하여 매우 중요하다. 유전자 발현 데이터를 이용한 암의 분류에 있어 기존의 연구들은 각 데이터를 하나의 클러스터에 소속시키는 하드 분할(hard partition)에 의한 분할 방식을 사용하는 하드 클러스터링을 사용하였다. 하지만 일반적으로 유전자 발현 암 데이터와 같은 실세계의 데이터는 쉽게 나뉘어지기 힘들거나 클러스터 간의 경계가 분명하지 않기 때문에 하드 클러스터링 기법은 주어진 데이터의 성질을 손실시킬 수 있는데 반해, 퍼지 클러스터링 기법은 각 데이터가 소속 정도에 따라 여러 개의 클러스터에 속할 수 있도록 분할하기 때문에 이러한 손실을 최소화할 수 있다. 따라서 본 논문에서는 퍼지 클러스터링의 대표적인 방법인 fuzzy c-means 클러스터링을 적용하여 암의 클래스를 예측하고, 다양한 하드 클러스터링 방법과 비교함으로써 퍼지 클러스터링의 성능을 검증하였다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일