$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

문서 내의 주제정보를 이용한 개선된 링크분석 알고리즘

Improved Link Analysis Algorithm Using Document Feature Information

초록

최근 인터넷을 대상으로 하는 정보검색의 방법 중 하이퍼링크 정보를 이용한 방법이 각광받고 있다. 그리고 하이퍼링크 정보이외에 문서내에 존재하는 다양한 정보를 이용하여 검색 성능을 향상시키고자 하는 시도가 지속적으로 이루어지고 있다. 본 연구에서는 문서와 문서 사이의 유사도를 이용하여 하이퍼링크의 가중치를 부설하여 검색 성능을 향상시킨 방법을 개선하여 문서내의 주제정보를 추출하고 주제 단위의 유사도를 이용하여 하이퍼링크의 가중치를 새롭게 부여하여 링크분석 알고리즘에 적용하였다. 본 연구에서 제안한 방법이 문서사이의 유사도를 이용한 방법보다 뛰어난 성능을 나타내고 있음이 입증되었다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일