$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

현재 많은 제조 업체들이 장비를 운영하는 중에 장비의 수명이나 이상으로 인한 고장으로 전체 작업 공정이 중단되어 큰 손실은 입은 많은 사례를 가지고 있다. 본 논문에서는 이러한 피해를 조금이나마 줄여 보고자 장비의 상태를 모니터링 및 분석하여 장비의 교체 시기 및 고장 의심 부분을 사용자에게 미리 알려주는 분석 툴을 설계한다. 실제 장비의 적용 대상은 현대중공업 LNG 선박 제조의 크레인 전동기를 대상으로 하였다. 특히, 크레인에서 가장 중요하다고 할 수 있는 전동기의 진동 데이터를 파형(Wavelet)화 하고, 이것을 FFT(Fast Fourier Transform) 변환하여 이 두 형태를 분석해서 전동기의 이상 징후를 발견하는데 초점을 맞추었다. 향후 이러한 적용 사례를 활용하게 되면, 고가 장비의 갑작스러운 고장으로 인한 제조업체의 손실을 조금이라도 줄일 수 있을 것으로 본다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일