$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

한국어 연속음성인식을 위한 발음사전 구축

Pronunciation Dictionary For Continuous Speech Recognition

초록

연속음성인식을 수행하기 위해서는 발음사전과 언어모델이 필요하다. 이 둘 사이에는 디코딩 단위가 일치하여야 하므로 발음사전 구축시 디코딩 단위로 표제어 단위를 선정하며 표제어 사이의 음운변화 현상을 반영한 발음사전을 구축하여야 한다. 한국어에 부합하는 음운변화현상을 분석하여 학습용 자동 발음열을 생성하고, 이를 통하여 발음사전을 구축한다. 전처리 단계로 기호, 단위, 숫자 등 전처리 과정 및 형태소 분석 과정을 수행하며, 디코딩 단위인 의사 형태소 단위를 생성하기 위해 규칙을 이용한 태깅 과정을 거친다. 이를 통해 나온 결과를 발음열 생성기 입력으로 하며, 결과는 학습용 발음열 또는 발음사전 구성을 위한 형태로 출력한다. 표제어간 음운변화 현상이 반영된 상태의 표제어 단위이므로 실제 음운변화가 반영되지 않은 상태의 표제어와는 그 형태가 상이하다. 이는 연속 발음시 생기는 현상으로 실제 인식에는 이 음운변화 현상이 반영된 사전이 필요하게 된다. 생성된 발음사전의 효용성을 확인하기 위해 다음과 같은 실험을 통해 성능을 평가하였다. 음향학습을 위하여 PBS(Phonetically Balanced Sentence) 낭독체 17200문장을 녹음하고 그 전사파일을 사용하여 학습을 수행하였고, 발음사전의 평가를 위하여 이 중 각각 3100문장을 사용하여 다음과 같은 실험을 수행하였다. 형태소 태그정보를 이용하여 표제어간 음운변화 현상을 반영한 최적의 발음사전과 다중 발음사전, 언어학적 기준에 의한 수작업으로 생성한 표준 발음사전, 그리고 표제어간의 음운변화 현상을 고려하지 않고 독립된 단어로 생성한 발음사전과의 비교 실험을 수행하였다. 실험결과 표제어간 음운변화 현상을 반영하지 않은 경우 단어 인식률이 43.21%인 반면 표제어간 음운변화 현상을 반영한 1-Best 사전의 경우 48.99%, Multi 사전의 경우 50.19%로 인식률이 5~6%정도 향상되었음을 볼 수 있었고, 수작업에 의한 표준발음사전의 단어 인식률 45.90% 보다도 약 3~4% 좋은 성능을 보였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

이 논문 조회수 및 차트

  • 상단의 제목을 클릭 시 조회수 및 차트가 조회됩니다.

DOI 인용 스타일

"" 핵심어 질의응답