$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

잡음 마스킹 레벨에 따른 복수 모델을 이용한 자동차 소음환경에서의 음성인식

Speech recognition in car noise environments using multiple models according to noise masking levls

초록

음성인식 시스템의 실용화 과정에서 훈련환경과 테스트 환경의 불일치로 인한 인식성능의 저하는 반드시 극복되어야 할 문제이다. 본 논문에서는 잡음 tR인 입력음성의 비음성구간에서 잡음레벨을 추정하여 음성 스펙트럼에서 추정된 잡음레벨을 빼는 스펙트럼 차감법고 스펙트럼 영역에서 미리 정해진 마스킹 레벨보다 낮은 에너지 값을 마스킹 레벨로 올려주는 잡음 마스킹을 함께 사용함으로써 훈련 환경과 테스트환경의 불일치를 줄이는 방법을 제안한다. 그리고 복수의 마스킹 레벨에 대한 모델들을 미리 만들어 두고 추정된 잡음 레벨에 따라 적합한 마스킹 레벨의 보델을 사용하여 인식을 수해?는 다중 모델 방법을 적용하였다. 자동차 소음환경에서 두 가지 마스킹 레벨에 대한 모델을 이용한 화자독립고립단어 인식 실험을 통하여 본 논문에서 제안한 방식은 정차중 무시동 환경에서 95.8%, 정차중 시동 환경에서 95.6%, 한적한 도로환경에서 92.8%, 복잡한 시내도로 환경에서 89.6%, 고속도로 환경에서 74.4%의 인식성능을 나타내었으며, 평균 90.7%의 성능을 얻을 수 있다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일