$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

특정 조사와 빈도수 높은 단어를 이용한 한글 논문의 유사도 측정 시스템 구현

Similarity Measurement System of Korean Documents Using the Specified Particles and High Frequency Words

초록

인터넷의 발달로 대량의 전자문서들을 손쉽게 구할 수 있는 정보의 바다라 불리는 현대사회에서 논문 표절은 심각한 문제를 안게 되었다. 표절여부를 검사하는 방법에는 여러 가지가 있지만 보다 정확하고 빠르게 검출할 수 있는 기법이 요구된다. 외국에서는 표절을 검사하기 위한 시스템적인 접근이 이루어지고 있지만 국내에서의 표절 검사에 대한 연구는 아직 초기 단계에 있다. 본 논문에서는 논문 표절 검사 시스템에 사용되는 기법 중 지문법을 바탕으로 하지만 기존의 단어, 문장 등을 사용하는 방법과 차별을 두어 몇몇 주요 단어와 특정 조사의 비교를 이용해 유사성을 측정하여 보다 빠르고 정확하게 검출할 수 있는 시스템을 구현해 보았다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일