$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

기계 학습은 인간의 지능을 아직 일부만 모델링하여 활용하는 기술임에도 불구하고 다양한 기술 분야에서 새로운 가능성을 열어주는 미래 시장의 핵심이다. 상용 네트워크 보안 시스템은 특정 규칙들을 정해 놓고 규칙에 어긋난 정보에 대하여 보안 위험이 있을 수 있다고 판단을 한다. 하지만 규칙을 잘 정의해 놓은 시스템에서 보안 위험이라고 경보가 나는 경우의 80% 이상이 일반적으로 오탐이다. 상용 네트워크 보안 시스템에 기계 학습을 활용하면 사람이 규칙으로 정의하기 어려운 정보의 재내 의미를 스스로 학습하여 분류에 활용할 수 있다. 본 연구에서는 이처럼 네트워크 공격 중 이상 공격 탐지에 기계 학습을 활용한 연구들에 대해 살펴보도록 하겠다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

이 논문 조회수 및 차트

  • 상단의 제목을 클릭 시 조회수 및 차트가 조회됩니다.

DOI 인용 스타일

"" 핵심어 질의응답