$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

강화학습 기반의 지역 경로 탐색 및 장애물 회피 시스템

Local Path Planning and Obstacle Avoidance System based on Reinforcement Learning

초록

WCS에서 AGV의 스케줄링과 동적, 정적 장애물 인식 및 충돌 회피문제는 오래전부터 다뤄져 온 중요한 문제이다. 본 논문에서는 위의 문제를 해결하기 위해 Lidar 센서를 중심으로 다양한 데이터를 기반으로 한 강화학습 시스템을 제안한다. 제안하는 시스템은 기본의 명시적인 알고리즘에 비해 다양하고 유동적인 환경에서 경로 계획과 동적 정적 장애물을 인식하고 안정적으로 회피하는 것을 확인하였으며 산업 현장에 도입 가능성을 확인하였다. 또한 강화학습의 적용 범위, 적용 방안과 한계에 대해서 시사한다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일