$\require{mediawiki-texvc}$
상세검색
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

농업용 저수지 이상거동 탐지를 위한 시계열 수위자료 특성 분석

Time Series Analysis of Agricultural Reservoir Water Level Data for Abnormal Behavior Detection

초록

최근 기후변화에 따른 극한 강우사상의 증가로 인하여 농업용 저수지의 재해 위험도가 증가하고 있는 추세이며, 사고가 발생할 때 마다 파손/붕괴된 시설물을 보수하는 대응형 유지관리체계에서 벗어나 기반시설의 성능과 생애주기 등을 고려하여 재해 발생을 사전에 예보 및 경보를 알릴 수 있는 예방적 관리체계로의 전환이 필요하다. 한국농어촌공사는 전국 1,500개 저수지에서 10분 단위 수위자료를 측정하고 있으며, 이를 분석하여 재해예방에 활용할 수 있는 기반이 조성되어 있으나 이에 대한 관리가 이루어지지 않고 있고 수집된 자료를 활용하여 재해 징후를 분석할 수 있는 재해 예방적 분석기술이 마련되어 있지 않은 실정이다. 본 연구에서는 농업용 저수지 수위자료를 이용한 저수지 이상거동을 판별하기 위하여 전국 34개 한국농어촌공사 관할 저수의 시계열 수위자료의 특성(Feature)을 분석하고자 한다. 시계열 자료의 시계열 특성을 분석하기 위하여 한국농어촌공사 관할의 전국 34개 저수지를 선정하여 분석을 실시하였다. 대상저수지는 지역별, 저수용량, 안정등급, 붕괴발생, 1개 지사관할 저수지로 각각 구분하여 선정하였으며, 각 저수지의 수위 측정기간(최소 5개년)에 대한 자료를 수집하였다. 농업용 저수지의 시계열 수위 자료의 특성을 분석하기 위하여 자료의 전처리를 수행하였다. 자료의 전처리는 시계열 수위자료의 잡음 특성, 기상자료 관련 변동특성 등 분류(Classification)에 영향을 미치는 노이즈 요소를 제거하는 과정이다. 전처리과정을 거친 자료는 특징(Feature) 추출 과정을 거치게 되고, 추출된 특징의 적합성에 따라 분류 알고리듬 성능에 많은 영향을 미친다. 따라서 시계열 자료의 특성을 파악하고 특징을 추출하는 것은 이상치 탐지에 있어 매우 중요한 과정이다. 본 연구에서는 시계열 자료 특징 추출 방법으로 물리적인 한계치, 확률적인 문턱값(Threshold), 시계열 패턴, 주변 저수지와의 시계열 상관분석 등을 적용하였으며, 이를 데이터베이스로 구축하여 이후 분류알고리듬 학습에 적용하여 정상치와 이상치를 판별하는데 이용될 수 있도록 하였다. 따라서 본 연구에서 제시되는 농업용 저수지의 시계열 특성은 다양한 분류알고리듬에 적용할 수 있으며, 이를 통하여 저수지 이상거동 판별을 위한 최적을 분류알고리듬의 선택에 도움이 될 것이다.

DOI 인용 스타일