$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Liquid pipeline leak detection

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) G01M-003/00   
미국특허분류(USC) 73/405 ; R ; 340/605
출원번호 US-0104371 (1979-12-17)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 16  인용 특허 : 3
초록

The occurrence and magnitude of a leak in a pipeline are determined by sensing a product velocity, pressure and temperature at an upstream point of flow of a product of known composition in said pipeline and sensing product velocity, pressure and temperature at a downstream point in said pipeline. The ambient temperature of the material surrounding said pipeline is sensed at spaced locations along said pipeline between said upstream and downstream points. The above parameters are employed to determine from four equations (conservation of mass, conservati...

대표
청구항

The method of determining the occurrence and magnitude of a leak in a pipeline which comprises: (a) continuously sensing pipeline parameters including product velocity, pressure and temperature at an upstream point of flow of a product of known composition in said pipeline; (b) continuously sensing pipeline parameters including product velocity, pressure and temperature at a downstream point in said pipeline; (c) determining the ambient temperature parameter of the material surrounding said pipeline; (d) plotting as a single valued function of time the m...

이 특허를 인용한 특허 피인용횟수: 16

  1. Walker, Samuel C.. Eccentric diaphragm valve. USP2014068740177.
  2. Charles R. Winston ; Daniel L. Gysling ; Mark R. Myers ; Alan D. Kersey ; Rebecca S. McGuinn. Fiber optic pressure sensor for DC pressure and temperature. USP2002036351987.
  3. Peterson Roger. Ground water infiltration detection system. USP1998045739420.
  4. Filippi Ernest A. ; Miller Kenneth L.. Method and apparatus for calibrating a leak detector. USP1999035883301.
  5. McCoy,Fred Grant; Fazekas,Jonathan Mark; Borntrager,Ryan R.. Method and apparatus for detecting a gas. USP2006057051578.
  6. Hill Wayne E. (Bucyrus KS) McEachern Dennis (Concord NC). Method and apparatus for detecting leakage in fuel storage and delivery systems. USP1989104876530.
  7. McCoy, Fred Grant; Fazekas, Jonathan Mark; Borntrager, Ryan R.. Method and apparatus for detecting leaks. USP2005016840086.
  8. McCoy, Fred Grant; Fazekas, Jonathan Mark; Borntrager, Ryan R.. Method and apparatus for detecting leaks. USP2005036860140.
  9. McCoy, Fred Grant; Fazekas, Jonathan Mark; Borntrager, Ryan R.. Method and apparatus for detecting leaks. USP2005036860141.
  10. McCoy,Fred Grant; Fazekas,Jonathan Mark; Borntrager,Ryan R.. Method and apparatus for detecting leaks. USP2007027178385.
  11. Horigome Hidekazu (Yokohama JPX) Onishi Takahiro (Yokohama JPX) Yamagishi Makoto (Kawasaki JPX). Method and apparatus for detecting leaks in a gas pipe line. USP1987034651559.
  12. Ryan, Nicholas John. Method for estimating the location of a leak in a pipeline. USP2014098838399.
  13. Farmer Edward J. (1611 20th St. Sacramento CA 95814). Method for locating leaks in a fluid pipeline and apparatus therefore. USP1993125272646.
  14. Sherikar,Sanjay V.. Method of determining valve leakage based on upstream and downstream temperature measurements. USP2006047031851.
  15. Barley, Jonathan; Morrow, Gregory. Pipeline flow modeling method. USP2015059026415.
  16. Cain, Russell P.; Carkhuff, Bliss G.; Bacon, John M.. Techniques for monitoring health of vessels containing fluids. USP2004126834556.