$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Apparatus for regulating furnace combustion

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) F23N-005/00   
미국특허분류(USC) 431/76 ; 236/15E
출원번호 US-0280994 (1981-07-06)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 39  인용 특허 : 8
초록

Methods and apparatus for regulating furnace combustion air flow are provided which measure a gaseous combustion product in furnace gas after combustion, generate a present signal responsive to the measurement and change flow rate of combustion air in response to the generated signal in a manner the same as flow rate was changed in response to a previously generated signal if the present signal relates to the previous signal in the manner the previous signal related to a signal ancestor thereto but change the flow rate of combustion air in response to th...

대표
청구항

Apparatus for regulating flow of combustion air to a furnace thereby to maintain a relatively optimum fuel-air mixture for high combustion efficiency in response to a measured level of carbon dioxide in furnace gas after combustion thereof, comprising: a. gas analyzer for sensing relative level of carbon dioxide in furnace gas after combustion thereof and producing an electrical signal proportional to sensed carbon dioxide level; b. amplifier means, receiving said electrical signal from said gas analyzer, for boosting said signal to a second signal level...

이 특허를 인용한 특허 피인용횟수: 39

  1. Koseki Hidenori,JPX ; Shigeoka Hiroaki,JPX. Combustion system and operation control method thereof. USP1999095957063.
  2. Hamrin, Douglas; Lampe, Steve. Controls for multi-combustor turbine. USP2016039273606.
  3. Muraki, Ryoji; Numata, Seiiti; Hayashi, Kanji. Fuel combustion control system. USP1985104545009.
  4. Prabhu, Edan. Fuel oxidation in a gas turbine system. USP2017039587564.
  5. Dalhuisen Peter B. (At Ugchelen NLX). Gas burner system. USP1986114622004.
  6. Prabhu, Edan D.. Gasifier power plant and management of wastes. USP2015069057028.
  7. Maslov, Boris A.. Gradual oxidation and autoignition temperature controls. USP2015129206980.
  8. Maslov, Boris A.. Gradual oxidation and autoignition temperature controls. USP2016039273608.
  9. Denison, Thomas Renau; Maslov, Boris A.. Gradual oxidation and multiple flow paths. USP2015038980193.
  10. Maslov, Boris A.. Gradual oxidation and multiple flow paths. USP2016059328660.
  11. Armstrong, Jeffrey. Gradual oxidation below flameout temperature. USP2016069371993.
  12. Maslov, Boris A.. Gradual oxidation below flameout temperature. USP2015038980192.
  13. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Gradual oxidation with adiabatic temperature above flameout temperature. USP2016079381484.
  14. Maslov, Boris A.. Gradual oxidation with adiabatic temperature above flameout temperature. USP2015018926917.
  15. Maslov, Boris A.; Armstrong, Jeffrey. Gradual oxidation with flue gas. USP2017089726374.
  16. Hamrin, Douglas; Armstrong, Jeffrey. Gradual oxidation with heat control. USP2016069359948.
  17. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016059347664.
  18. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016059328916.
  19. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016069359947.
  20. Maslov, Boris A.; Hamrin, Douglas. Gradual oxidation with heat exchange media. USP2015049017618.
  21. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Gradual oxidation with heat transfer. USP2017029567903.
  22. Armstrong, Jeffrey; Maslov, Boris A.. Gradual oxidation with heat transfer. USP2016019234660.
  23. Hamrin, Douglas; Martin, Richard; Armstrong, Jeffrey. Gradual oxidation with heat transfer. USP2016059353946.
  24. Schnepel, Mark. Gradual oxidation with reciprocating engine. USP2014038671917.
  25. Schnepel, Mark; Maslov, Boris A.. Gradual oxidation with reciprocating engine. USP2014098844473.
  26. Prabhu, Edan. Heating a reaction chamber. USP2014018621869.
  27. Martin, Richard; Armstrong, Jeffrey; Hamrin, Douglas. Hybrid gradual oxidation. USP2017019534780.
  28. Roy, William J.; Bicknell, James F.. Igniter and flame sensor assembly with opening. USP2018039915425.
  29. Prabhu, Edan. Managing leaks in a gas turbine system. USP2013038393160.
  30. Foley Patrick J. (86 Hillsdale Ames IA 50010). Means and method of optimizing efficiency of furnaces, boilers, combustion ovens and stoves, and the like. USP1987064676734.
  31. Hamrin, Douglas; Lampe, Steve. Multi-combustor turbine. USP2016039279364.
  32. Prabhu, Edan. Oxidizing fuel. USP2014038671658.
  33. Prabhu, Edan. Oxidizing fuel in multiple operating modes. USP2018039926846.
  34. Prabhu, Edan. Oxidizing fuel in multiple operating modes. USP2014048701413.
  35. Prabhu, Edan D.. Processing fuel and water. USP2014118893468.
  36. Lu, Chen-Yuan; Kuo, Shih-Kang; Chiang, Lien-Kuei; Li, Wen-Chieh; Du, Shan-Wen. Resident measurement system for charge level of blast furnace. USP2013108568652.
  37. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Staged gradual oxidation. USP2016029267432.
  38. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas; Perry, Joe. Staged gradual oxidation. USP2014088807989.
  39. Andersen, Viggo S.o slashed.ren; Hansen, Peter Pors Jessen. Stove for solid fuel. USP2003076595199.