• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Airfoil trailing edge

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) B64C-011/18   
미국특허분류(USC) 244/130 ; 244/35R ; 416/235 ; 416/236R
출원번호 US-0947166 (1986-12-29)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 14  인용 특허 : 1

An airfoil has a plurality of spaced apart, U-shaped troughs in either or both its suction or pressure surface in the trailing edge region. Each trough extends in a direction generally parallel to the bulk fluid flow in its vicinity near the airfoil surface and has an outlet at the trailing edge. The troughs increase in depth from their inlets toward their outlets, the maximum depth being no more than half the trailing edge thickness. The troughs are spaced apart, sized and configured to flow full over their entire length and to cause fluid to flow into ...


A gas turbine engine airfoil having a suction surface and pressure surface which converge toward each other defining a trailing edge region and a thin, longitudinally extending blunt trailing edge surface of said airfoil, wherein the thickness of said airfoil in said trailing edge region is built up or reduced at a plurality of spaced apart locations to define a plurality of spaced apart, U-shaped troughs in at least one of said pressure and suction surfaces, each trough extending in a direction generally parallel to the bulk fluid flow streamlines in it...

이 특허를 인용한 특허 피인용횟수: 14

  1. Ramm, Guenter; Lang, Christine. Airfoil having a profiled trailing edge for a fluid flow machine, blade, and integrally blade rotor. USP2017059657576.
  2. Wood, Trevor Howard; Gupta, Anurag; Haber, Ludwig Christian; Gliebe, Philip Roger. Airfoil having reduced wake. USP2013048419372.
  3. Ortega, Jason M.; Salari, Kambiz. Apparatus and method for reducing drag of a bluff body in ground effect using counter-rotating vortex pairs. USP2005086926345.
  4. Guigné, Jacques Y.; Davidson, Ron. Drag reduction device for transport vehicles having randomized irregular shaped edge vortex generating channels. USP2014068757701.
  5. Shelman-Cohen, Alexander J.. Drag reduction systems having fractal geometry/geometrics. USP20180610001015.
  6. Bacon, Andrew. Fuel efficiency of road vehicles. USP20190310239568.
  7. Bacon, Andrew. Fuel efficiency of road vehicles. USP2017069682735.
  8. Bacon, Andrew. Fuel efficiency of road vehicles. USP20180910081397.
  9. Kao, Alan Lin; Robinson, Lance Travis; Chilcoat, David Wayne. High efficiency impeller. USP2015069046090.
  10. Teraoka, Hironobu; Komatsu, Akira. Multi-blade fan. USP2011108029242.
  11. Polacsek, Ronald R.. Spiral-based axial flow devices. USP2005096948910.
  12. Gupta, Anurag; Yao, Jixian. System and method for enhanced turbine wake mixing via fluidic-generated vortices. USP2013128608429.
  13. Obrecht, John M.; Steingrimsson, Arni T.. Trailing edge modifications for wind turbine airfoil. USP2017069670901.
  14. Enevoldsen, Peder Bay; Kristensen, Jens Jørgen Østergaard; Stege, Jason; Thrue, Carsten. Wind turbine rotor blade element and wind turbine rotor blade. USP2018039920740.