$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Multi-analyte sensing electrolytic cell 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G01N-027/404
  • G01N-027/414
출원번호 US-0470954 (1990-01-26)
발명자 / 주소
  • Joseph Jose P. (Menlo Park CA) Madou Marc J. (Palo Alto CA)
출원인 / 주소
  • Commtech International Management Corporation (Menlo Park CA 02)
인용정보 피인용 횟수 : 88  인용 특허 : 0

초록

An electrolytic sensor is set forth for measuring the amounts of an ionic and of a vaporous species in a liquid. The system has an electrode sensitive to an ionic species and another electrode sensitive to a vaporous species. A unitary membrane covers the electrodes and the requisite electrolyte wit

대표청구항

A multi-analyte electrolytic sensor for determining the concentrations of an ionic species and of at least one vaporous species, both dissolved in a liquid, comprising: a substrate having an ionic species sensing area and a vaporous species sensing area; a first electrolyte on said ionic species sen

이 특허를 인용한 특허 (88)

  1. Carlen, Edwin; Weinberg, Marc S.; Uhland, Angela Z.; Bernstein, Jonathan; Aceti, John; Tupper, Malinda M., Accessible stress-based electrostatic monitoring of chemical reactions and binding.
  2. Boock, Robert; Rixman, Monica; Brauker, James H.; Petisce, James R.; Simpson, Peter C.; Brister, Mark; Tapsak, Mark A.; Carr-Brendel, Victoria, Analyte sensor.
  3. Brauker, James H.; Boock, Robert; Rixman, Monica; Simpson, Peter C.; Brister, Mark; Shults, Mark, Analyte sensor.
  4. Curry, Kenneth; Petisce, James R.; Oviatt, Henry; Valiket, Mena, Analyte sensor.
  5. Simpson, Peter C.; Boock, Robert J.; Petisce, James R.; Brister, Mark C.; Rixman, Monica A.; Woo, Kum Ming; Nguyen, Lisa; Brunner, Seth R.; Chee, Arthur; Nicholas, Melissa A.; Wightlin, Matthew D.; Pryor, Jack; Markovic, Dubravka, Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise.
  6. Simpson, Peter C.; Boock, Robert; Petisce, James R.; Brister, Mark; Rixman, Monica A.; Woo, Kum Ming; Nguyen, Lisa; Brunner, Seth R.; Chee, Arthur; Nicholas, Melissa A.; Wightlin, Matthew; Pryor, Jack; Markovic, Dubravka, Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise.
  7. Kamath, Apurv Ullas; Simpson, Peter C.; Brauker, James H.; Goode, Jr., Paul V., Calibration techniques for a continuous analyte sensor.
  8. Petisce, James R.; Woo, Kum Ming; Ha, Victor; Nicholas, Melissa, Cellulosic-based resistance domain for an analyte sensor.
  9. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K., Device and method for determining analyte levels.
  10. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K., Device and method for determining analyte levels.
  11. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K., Device and method for determining analyte levels.
  12. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K., Device and method for determining analyte levels.
  13. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K., Device and method for determining analyte levels.
  14. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K., Device and method for determining analyte levels.
  15. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K., Device and method for determining analyte levels.
  16. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K.; Gilligan, Barbara J.; Tapsak, Mark A., Device and method for determining analyte levels.
  17. Shults, Mark C.; Updike, Stuart J.; Rhodes, Rathbun K.; Gilligan, Barbara J.; Tapsak, Mark A., Device and method for determining analyte levels.
  18. Lauks, Imants; Maczuszenko, Andrzej, Diagnostic devices incorporating fluidics and methods of manufacture.
  19. Lauks, Imants; Maczuszenko, Andrzej, Diagnostic devices incorporating fluidics and methods of manufacture.
  20. Lauks, Imants; Maczuszenko, Andrzej, Diagnostic devices incorporating fluidics and methods of manufacture.
  21. Lauks, Imants; Maczuszenko, Andrzej, Diagnostic devices incorporating fluidics and methods of manufacture.
  22. Prince,Jennifer Ryan; Dineen,Andrew; Williams,John R., Disposable, self-administered electrolyte test.
  23. Brister, Mark C.; Petisce, James R.; Simpson, Peter C., Dual electrode system for a continuous analyte sensor.
  24. Simpson, Peter C.; Brauker, James H.; Goode, Paul V.; Kamath, Apurv U.; Petisce, James R.; Woo, Kum Ming; Nicholas, Melissa A.; Boock, Robert J.; Rixman, Monica A.; Burd, John; Rhodes, Rathbun K.; Tapsak, Mark A., Dual electrode system for a continuous analyte sensor.
  25. Simpson, Peter C.; Brauker, James H.; Goode, Paul V.; Kamath, Apurv U.; Petisce, James R.; Woo, Kum Ming; Nicholas, Melissa A.; Boock, Robert J.; Rixman, Monica A.; Burd, John; Rhodes, Rathburn K.; Tapsak, Mark A., Dual electrode system for a continuous analyte sensor.
  26. Madou, Marc J.; Daunert, Sylvia, Dual stage microvalve and method of use.
  27. Feng Chang-Dong ; Chu Edmond Y., Electrochemical gas sensor and method of making the same.
  28. Crumly, William F.; Madou, Marc J., Electrochemical microsensor package.
  29. Brenneman, Allen J.; Rebec, Mihailo V., Electrochemical sensor system using a substrate with at least one aperture and method of making the same.
  30. Simpson, Peter C.; Petisce, James R.; Carr-Brendel, Victoria E.; Brauker, James H., Electrode systems for electrochemical sensors.
  31. Kuhlman, Kimberly; Buehler, Martin G., Electronic tongue.
  32. Harrison Daniel J.,CAX ; Neufeld Aaron,AUX, Eva containing ion selective membranes and methods of making same.
  33. Davies David F. (Locks Heath GBX), Gas sensor.
  34. Martell Dennis ; Warburton Richard Grove ; Lindner Laura Ann ; Lindner Juergen, Gas sensor with conductive housing portions.
  35. Lauks, Imants R.; Varlan, Anca; Oussova, Alexandra; Bales, Michael, Heterogeneous membrane electrodes.
  36. Lauks, Imants; Varlan, Anca; Oussova, Alexandra; Bales, Michael, Heterogeneous membrane electrodes.
  37. Lauks,Imants; Maczuszenko,Andrzej, Heterogeneous membrane electrodes.
  38. Petisce, James R.; Brister, Mark; Shults, Mark; Brauker, James H.; Neale, Paul V., Implantable analyte sensor.
  39. Chan Andy D. C., Material for establishing solid state contact for ion selective electrodes.
  40. Chan Andy D. C., Material for establishing solid state contact for ion selective electrodes.
  41. Brenneman, Allen J; Rebec, Mihailo V., Method of determining an analyte concentration of a fluid.
  42. Andy D. C. Chan, Method of making a material for establishing solid state contact for ion selective electrodes.
  43. Lee, Jae Seon; Shin, Jae Ho; Lee, Min Hyung; Nam, Hakhyun; Cha, Geun Sig, Microchip-based carbon dioxide gas sensor.
  44. Lee, Dong Kwon; Kang, Tae Young; Choi, Sung Hyuk; Lee, Jae Seon; Nam, Hakhyun; Cha, Geun Sig, Microchip-type oxygen gas sensor based on differential potentiometry.
  45. Girault Hubert Hugues Jacques,GBX ; Seddon Brian Jeffrey,GBX, Microelectrodes and amperometric assays.
  46. Dineen,Andrew; Williams,John R.; Prince,Jennifer Ryan, Microfluidic ion-selective electrode sensor system.
  47. Petisce, James R.; Tapsak, Mark A.; Simpson, Peter C.; Carr-Brendel, Victoria E.; Brauker, James H., Oxygen enhancing membrane systems for implantable devices.
  48. Petisce, James R.; Tapsak, Mark A.; Simpson, Peter C.; Carr-Brendel, Victoria E.; Brauker, James H., Oxygen enhancing membrane systems for implantable devices.
  49. Petisce, James R.; Tapsak, Mark A.; Simpson, Peter C.; Carr-Brendel, Victoria; Brauker, James H., Oxygen enhancing membrane systems for implantable devices.
  50. Petisce, James R.; Tapsak, Mark A.; Simpson, Peter C.; Carr-Brendel, Victoria; Brauker, James H., Oxygen enhancing membrane systems for implantable devices.
  51. Petisce, James; Tapsak, Mark A.; Simpson, Peter C.; Carr-Brendel, Victoria; Brauker, James H., Oxygen enhancing membrane systems for implantable devices.
  52. Petisce, James; Tapsak, Mark A.; Simpson, Peter C.; Carr-Brendel, Victoria; Brauker, James H., Oxygen enhancing membrane systems for implantable devices.
  53. Simpson, Peter C.; Boock, Robert J.; Wightlin, Matthew D.; Shults, Mark C., Particle-containing membrane and particulate electrode for analyte sensors.
  54. Simpson, Peter C.; Boock, Robert J.; Wightlin, Matthew D.; Shults, Mark C., Particle-containing membrane and particulate electrode for analyte sensors.
  55. Simpson, Peter C.; Boock, Robert J.; Wightlin, Matthew; Shults, Mark C., Particle-containing membrane and particulate electrode for analyte sensors.
  56. Simpson, Peter C.; Boock, Robert J.; Wightlin, Matthew; Shults, Mark C., Particle-containing membrane and particulate electrode for analyte sensors.
  57. Qin, Wei; Cheek, Daniel S.; Hobot, Christopher; Bonnema, Kelvin; Meyer, Randy; Nippoldt, Douglas Dean; Sitko, Vitally G.; Ye, Qingshan (Sam); Ramamurthy, Narayanan, Point of care heparin determination system.
  58. Qin, Wei; Cheek, Daniel S.; Hobot, Christopher; Bonnema, Kelvin; Meyer, Randy; Nippoldt, Douglas Dean; Sitko, Vitally G.; Ye, Qingshan (Sam); Ramamurthy, Narayanan, Point of care heparin determination system.
  59. Boock, Robert J.; Rixman, Monica A.; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  60. Boock, Robert J.; Rixman, Monica A.; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  61. Boock, Robert J.; Rixman, Monica A.; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  62. Boock, Robert J.; Rixman, Monica A.; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  63. Boock, Robert J.; Rixman, Monica A.; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  64. Boock, Robert; Rixman, Monica A.; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  65. Boock, Robert; Rixman, Monica A.; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  66. Boock, Robert; Swinney, Monica Rixman; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  67. Boock, Robert; Swinney, Monica Rixman; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  68. Boock, Robert; Swinney, Monica Rixman; Zhang, Huashi; Estes, Michael J.; Lawrence, Kristina, Polymer membranes for continuous analyte sensors.
  69. Broy, Stephen H., Pre-calibrated gas sensor.
  70. Kruglick, Lewis; Kruglick, Ezekiel, Sensing of gaseous leakage into body for early detection of colorectal anastomotic leakage.
  71. Rhodes, Rathbun K.; Tapsak, Mark A.; Brauker, James H.; Shults, Mark C., Sensor head for use with implantable devices.
  72. Rhodes, Rathbun K.; Tapsak, Mark A.; Brauker, James H.; Shults, Mark C., Sensor head for use with implantable devices.
  73. Rhodes, Rathbun K.; Tapsak, Mark A.; Brauker, James H.; Shults, Mark C., Sensor head for use with implantable devices.
  74. Boock, Robert J.; Rixman, Monica A., Silicone based membranes for use in implantable glucose sensors.
  75. Boock, Robert J.; Swinney, Monica Rixman, Silicone based membranes for use in implantable glucose sensors.
  76. Boock, Robert; Rixman, Monica, Silicone based membranes for use in implantable glucose sensors.
  77. Boock, Robert; Rixman, Monica, Silicone based membranes for use in implantable glucose sensors.
  78. Boock, Robert; Rixman, Monica, Silicone based membranes for use in implantable glucose sensors.
  79. Tapsak, Mark A.; Rhodes, Rathbun K.; Shults, Mark C.; McClure, Jason D., Techniques to improve polyurethane membranes for implantable glucose sensors.
  80. Tapsak, Mark A.; Rhodes, Rathbun K.; Shults, Mark C.; McClure, Jason D., Techniques to improve polyurethane membranes for implantable glucose sensors.
  81. Tapsak, Mark A.; Rhodes, Rathbun K.; Shults, Mark C.; McClure, Jason D., Techniques to improve polyurethane membranes for implantable glucose sensors.
  82. Tapsak, Mark A.; Rhodes, Rathbun K.; Shults, Mark C.; McClure, Jason D., Techniques to improve polyurethane membranes for implantable glucose sensors.
  83. Tapsak, Mark A.; Rhodes, Rathbun K.; Shults, Mark C.; McClure, Jason D., Techniques to improve polyurethane membranes for implantable glucose sensors.
  84. Tapsak, Mark A.; Rhodes, Rathbun K.; Shults, Mark C.; McClure, Jason D., Techniques to improve polyurethane membranes for implantable glucose sensors.
  85. Bickford, James A.; Williams, John R.; Harjes, Daniel I.; Reiter, Andrew, Three-dimensional metal ion sensor arrays on printed circuit boards.
  86. Brister, Mark; Neale, Paul V.; Brauker, James H.; Thrower, James Patrick, Transcutaneous analyte sensor.
  87. Brister, Mark; Neale, Paul V.; Brauker, James; Thrower, James Patrick, Transcutaneous analyte sensor.
  88. Brister, Mark; Neale, Paul V.; Saint, Sean; Petisce, James R.; Thrower, James Patrick; Kamath, Apurv Ullas; Kline, Daniel S.; Guerre, John A.; Codd, Daniel Shawn; McGee, Thomas F.; Petersen, David Michael, Transcutaneous analyte sensor.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로