$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

RIE process for fabricating submicron, silicon electromechanical structures 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-021/44
  • H01L-021/48
  • H01L-021/90
출원번호 US-0821944 (1992-01-16)
발명자 / 주소
  • MacDonald Noel C. (Ithaca) Zhang Zuoying L. (Ithaca NY)
출원인 / 주소
  • Cornell Research Foundation, Inc. (Ithaca NY 02)
인용정보 피인용 횟수 : 94  인용 특허 : 0

초록

A reactive ion etching process is used for the fabrication of submicron, single crystal silicon, movable mechanical structures and capacitive actuators. The reactive ion etching process gives excellent control of lateral dimensions while maintaining a large vertical depth in the formation of high as

대표청구항

A reactive ion etching process for the fabrication of submicron, single crystal released structures, comprising: forming a wafer from which a single crystal structure is to be fabricated; forming an etch mask on a top surface of said wafer; transferring to said etch mask by reactive ion etching in a

이 특허를 인용한 특허 (94)

  1. Fujii Tetsuo,JPX, Acceleration sensor and process for the production thereof.
  2. Adams, Scott G.; Davis, Tim, Boundary isolation for microelectromechanical devices.
  3. Zhou Hao, Buffer grated structure for metrology mark and method for making the same.
  4. MacDonald Noel C. (Ithaca NY) Bertsch Fred M. (Ithaca NY) Shaw Kevin A. (Ithaca NY) Adams Scott G. (Ithaca NY), Capacitance based tunable micromechanical resonators.
  5. Bieselt, Steffen, Carrier and a method for processing a carrier.
  6. Jackson, Ricky Alan; Meinel, Walter Baker; Kirmse, Karen Hildegard Ralston; Meinel, Kandis, Cavity open process to improve undercut.
  7. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Device selection circuitry constructed with nanotube ribbon technology.
  8. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Device selection circuitry constructed with nanotube technology.
  9. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  10. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  11. Kikinis Dan (20264 Ljepava Dr. Saratoga CA 95070), Dynamic holographic display with cantilever.
  12. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  13. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  14. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  15. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory having cell selection circuitry constructed with nanotube technology.
  16. Rueckes, Thomas; Segal, Brent M.; Bertin, Claude L., Electromechanical three-trace junction devices.
  17. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Electromechanical three-trace junction devices.
  18. Rueckes,Thomas; Segal,Brent M.; Bertin,Claude, Electromechanical three-trace junction devices.
  19. Adams,Scott; Davis,Tim; Miller,Scott; Shaw,Kevin; Chong,John Matthew; Lee,Seung (Chris) Bok, Electrostatic actuator for microelectromechanical systems and methods of fabrication.
  20. Adams,Scott; Davis,Tim; Miller,Scott; Shaw,Kevin; Chong,John Matthew; Lee,Seung Bok (Chris), Electrostatic actuator for microelectromechanical systems and methods of fabrication.
  21. Adams, Scott; Davis, Tim; Miller, Scott; Shaw, Kevin; Chong, John Matthew; Lee, Seung Bok (Chris), Electrostatic actuator for micromechanical systems.
  22. Dehe, Alfons; Sojka, Damian; Schmenn, Andre; Ahrens, Carsten, Field emission devices and methods of making thereof.
  23. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  24. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  25. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Hybrid circuit having nanotube electromechanical memory.
  26. Sworowski, Marc; Chevrie, David D. R.; Philippe, Pascal, Integrated single-crystal MEMS device.
  27. Lemkin, Mark A.; Clark, William A.; Juneau, Thor; Roessig, Allen W., Low-resistivity microelectromechanical structures with co-fabricated integrated circuit.
  28. Van Beek, Jozef T. M.; Van Velzen, Bart, MEMS resonator, a method of manufacturing thereof, and a MEMS oscillator.
  29. MacDonald Noel C. (Ithaca NY) Jazairy Ali (Ithaca NY), Masking process for fabricating ultra-high aspect ratio, wafer-free micro-opto-electromechanical structures.
  30. MacDonald, Noel C.; Aimi, Marco F., Metal MEMS devices and methods of making same.
  31. MacDonald,Noel C.; Aimi,Marco F., Metal MEMS devices and methods of making same.
  32. Shong, Ci-moo; Kang, Seok-jin; Chung, Seok-whan; Lee, Moon-chul; Jung, Kyu-dong; Kim, Jong-seok; Jun, Chan-bong; Hong, Seog-woo; Kang, Jung-ho, Metal wiring method for an undercut.
  33. Allman, Derryl; Gregory, John, Metal-insulator-metal capacitor formed by damascene processes between metal interconnect layers and method of forming same.
  34. Baek Seog-soon,KRX ; Ha Byeoung-ju,KRX ; Oh Young-soo,KRX, Method for fabricating micro inertia sensor.
  35. Kautzsch, Thoralf; Scire, Alessia; Bieselt, Steffen; Hirler, Franz; Mauder, Anton; Scholz, Wolfgang; Schulze, Hans-Joachim; Santos Rodriguez, Francisco Javier, Method for manufacturing an electronic device and method for operating an electronic device.
  36. Kautzsch, Thoralf; Scire, Alessia; Bieselt, Steffen; Hirler, Franz; Mauder, Anton; Scholz, Wolfgang; Schulze, Hans-Joachim; Santos Rodriguez, Francisco Javier, Method for manufacturing an electronic device and method for operating an electronic device.
  37. Philippe Robert FR; France Michel FR; Hubert Grange FR, Method for producing a suspended element in a micro-machined structure.
  38. Metzger,Lars; Fischer,Frank, Method for the production of a micromechanical device, particularly a micromechanical oscillating mirror device.
  39. Gary K. Fedder ; Xu Zhu, Method of fabricating micromachined structures and devices formed therefrom.
  40. Chong, John M.; Waldrop, Paul; Davis, Tim; Adams, Scott, Method of fabricating semiconductor wafers having multiple height subsurface layers.
  41. David Horsley, Method of fabricating suspended microstructures.
  42. Chui Benjamin W. ; Kenny Thomas W., Method of making electrical elements on the sidewalls of micromechanical structures.
  43. MacDonald Noel C. ; Zhang Z. Lisa, Method of making high aspect ratio probes with self-aligned control electrodes.
  44. Arima, Michitsugu, Method of manufacturing three-dimensional structure and method of manufacturing oscillator.
  45. Shih Tsu,TWX ; Chang Jui-Yu,TWX ; Jang Syun-Ming,TWX ; Yu Chen-Hua,TWX, Method to protect alignment mark in CMP process.
  46. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  47. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  48. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  49. Rueckes, Thomas; Segal, Brent M., Methods of nanotube films and articles.
  50. Rueckes,Thomas; Segal,Brent M., Methods of nanotube films and articles.
  51. Rueckes,Thomas; Segal,Brent M., Methods of nanotubes films and articles.
  52. Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  53. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  54. Bowers, John Edward; Helkey, Roger Jonathan; Corbalis, Charles; Sink, Robert Kehl; Lee, Seung Bok; MacDonald, Noel, Micro-electro-mechanical-system (MEMS) mirror device and methods for fabricating the same.
  55. Galvin Gregory J. ; Davis Timothy J. ; MacDonald Noel C., Microelectromechanical accelerometer for automotive applications.
  56. Shaw Kevin A. (Ithaca NY) Adams Scott G. (Ithaca NY) MacDonald Noel C. (Ithaca NY), Microelectromechanical lateral accelerometer.
  57. Shaw Kevin A. (Ithaca NY) Adams Scott G. (Ithaca NY) MacDonald Noel C. (Ithaca NY), Microelectromechanical lateral accelerometer.
  58. Haronian Dan,ILX ; MacDonald Noel C., Microelectromechanics-based frequency signature sensor.
  59. Brosnihan Timothy J. ; Bustillo James ; Clark William A., Microfabricated high aspect ratio device with an electrical isolation trench.
  60. Clark William A. ; Juneau Thor N. ; Roessig Allen W. ; Lemkin Mark A., Microfabricated structures with electrical isolation and interconnections.
  61. William A. Clark ; Mark A. Lemkin ; Thor N. Juneau ; Allen W. Roessig, Microfabricated structures with trench-isolation using bonded-substrates and cavities.
  62. Chong John M. ; Adams Scott G. ; MacDonald Noel C. ; Shaw Kevin A., Microfabrication process for enclosed microstructures.
  63. Helkey, Roger Jonathan, Micromachined apparatus for improved reflection of light.
  64. Helkey, Roger Jonathan, Micromachined apparatus for improved reflection of light.
  65. Galvin Gregory J. ; Davis Timothy J. ; MacDonald Noel C., Micromechanical accelerometer for automotive applications.
  66. MacDonald Noel C. ; Shaw Kevin A. ; Adams Scott G., Micromechanical accelerometer for automotive applications.
  67. Saif Muhammad T. A. ; Huang Trent ; MacDonald Noel C., Micromotion amplifier.
  68. Gopal, Vidyut; Chinn, Jeffrey D., Microstructure devices, methods of forming a microstructure device and a method of forming a MEMS device.
  69. Shaw Kevin A. ; Zhang Z. Lisa ; MacDonald Noel C., Microstructures and single mask, single-crystal process for fabrication thereof.
  70. Shaw Kevin A. ; Zhang Z. Lisa ; MacDonald Noel C., Microstructures and single mask, single-crystal process for fabrication thereof.
  71. Subramanian,Kanakasabapathi; Huang,Xiaojun T.; MacDonald,Noel C., Multi-finger z-actuator.
  72. Hofmann, Wolfgang M. J.; Neves, Hercules; MacDonald, Noel C.; Adams, Scott G., Multiple-level actuators and clamping devices.
  73. Adams Scott G. ; Wang Yongmei Cindy ; Macdonald Noel C. ; Thorp James S., Multistable tunable micromechanical resonators.
  74. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  75. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  76. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  77. Helkey, Roger Jonathan; Koenig, Herbert Paul; Bowers, John Edward; Sink, Robert Kehl, Optical switch having mirrors arranged to accommodate freedom of movement.
  78. Kevin A. Shaw ; James S. Sutherland, Optoelectronic packaging.
  79. Kimberly L. Turner ; Noel C. MacDonald, Parametric resonance in microelectromechanical structures.
  80. Yoda, Mitsuhiro, Physical quantity sensor and electronic apparatus.
  81. Arturo A. Ayon, Plasma etch techniques for fabricating silicon structures from a substrate.
  82. Fujii, Tetsuo; Yokura, Hisanori; Higuchi, Hirofumi, Semiconductor dynamic quantity sensor and method of manufacturing the same.
  83. Kazuhiko Kano JP; Junji Ohara JP; Nobuyuki Ohya JP, Semiconductor physical quantity sensor and method of manufacturing the same.
  84. Chong, John; Lee, Seung Bok; MacDonald, Noel; Lewis, Robert; Hunt, Peter, Shaped electrodes for micro-electro-mechanical-system (MEMS) devices to improve actuator performance and methods for fabricating the same.
  85. Das John H. (Gaithersburg MD) MacDonald Noel C. (Ithaca NY) Mayer James W. (Phoenix AZ) Spallas James P. (Dublin CA), Silicon tip field emission cathodes.
  86. Petersen Kurt E. ; Maluf Nadim ; McCulley Wendell ; Logan John ; Klaasen Erno ; Noworolski Jan M., Single crystal silicon sensor with high aspect ratio and curvilinear structures.
  87. Petersen Kurt E. ; Maluf Nadim ; McCulley Wendell ; Logan John ; Klaasen Erno ; Noworolski Jan Mark, Single crystal silicon sensor with high aspect ratio and curvilinear structures.
  88. Lal, Amit; Lagally, Max G.; Lee, Chung Hoon; Rugheimer, Paul Powell, Stress control of semiconductor microstructures for thin film growth.
  89. Lal,Amit; Lagally,Max G.; Lee,Chung Hoon; Rugheimer,Paul Powell, Stress control of semiconductor microstructures for thin film growth.
  90. Cho,Dong il, Surface/bulk micromachined single-crystalline silicon micro-gyroscope.
  91. Chong John M. ; MacDonald Noel C., Suspended moving channels and channel actuators for microfluidic applications and method for making.
  92. John M. Chong ; Noel C. MacDonald, Suspended moving channels and channel actuators for microfluidic applications and method for making.
  93. Subramanian,Kanakasabapathi; Huang,Xiaojun T.; MacDonald,Noel C., Three dimensional high aspect ratio micromachining.
  94. Je, Chang Han, Three-dimensional MEMS structure and method of manufacturing the same.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로