$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

After-burning turbo-jet engine with a fixed geometry exhaust nozzle

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) F02K-003/075    F02K-003/10   
미국특허분류(USC) 60/204 ; 60/2263 ; 60/261
출원번호 US-0109829 (1993-08-20)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 12  인용 특허 : 0
초록

A method and apparatus are provided for generating thrust in a turbo-fan engine (10), including generating additional thrust with after-burning. Sensors are used for monitoring a temperature in nozzle (26) of engine (10) and fan stream pressure of engine (10). The measured temperature in nozzle (26) and pressure in the fan stream are compared to a predetermined schedule for temperature and pressure by controller (54). Based on the comparison, a portion of the fan stream will be modulated to fan stub stage (16) by variable bypass control (30). Variable by...

대표
청구항

A method for generating thrust in an engine, comprising the steps of: compressing air with a compressor stage; mixing fuel with the compressed air; igniting a mixture of compressed air and fuel causing the mixture to burn and expand; transferring the expanding mixture to a turbine stage; driving at least one shaft with the turbine stage; directing an exhaust from the turbine stage to a nozzle for discharge from the engine; driving a fan stage with the at least one shaft for creating thrust with a fan stream; driving the compressor stage with the at least...

이 특허를 인용한 특허 피인용횟수: 12

  1. Rupp, George D.; Troia, Trajaen J.. Aircraft engine airflow modulation apparatus and method for engine bay cooling and cycle flow matching. USP2016059353684.
  2. Kerns, Daniel Patrick; Reynolds, Brandon ALlanson. Airfoil fluid curtain to mitigate or prevent flow path leakage. USP20190410253643.
  3. Renshaw Kevin J.. Apparatus for a variable area nozzle. USP1998075782432.
  4. Gayme, Dennice F.; Menon, Sunil K.; Nwadiogbu, Emmanuel O.; Mukavetz, Dale W.; Ball, Charles M.. Fault detection system and method using augmented data and fuzzy logic. USP2010067734400.
  5. Smith, Jesse Walter. Fixed nozzle thrust augmentation system. USP2010097788899.
  6. Catt Jeffrey Alan ; Miller Daniel Nicholas. Method and apparatus of asymmetric injection at the subsonic portion of a nozzle flow. USP2000096112513.
  7. Miller, Daniel N.; Yagle, Patrick J.; Ginn, Kerry B.; Hamstra, Jeffrey W.. Method and apparatus of asymmetric injection into subsonic flow of a high aspect ratio/complex geometry nozzle. USP2005116962044.
  8. Miller Daniel Nicholas ; Catt Jeffrey Alan. Method and apparatus of pulsed injection for improved nozzle flow control. USP2000096112512.
  9. Shapiro, Jason David; Desander, Donald Brett; Vickers, Edward Charles. Methods and assemblies for attaching airfoils within a flow path. USP20190410253641.
  10. Shapiro, Jason David; Reynolds, Brandon ALlanson; Baldiga, Jonathan David. Methods and features for positioning a flow path inner boundary within a flow path assembly. USP20190410247019.
  11. Giffin ; III Rollin G. ; Johnson James E. ; Crall David W. ; Salvage John W. ; Szucs Peter N.. Turbofan engine with a core driven supercharged bypass duct. USP1998095809772.
  12. Bartos James W.. Turbofan engine with a low pressure turbine driven supercharger in a bypass duct operated by a fuel rich combustor and a. USP1999025867980.