$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

특허 상세정보

Neural network system having minimum energy function value

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) G06F-009/00   
미국특허분류(USC) 395/24 ; 395/23 ; 395/27
출원번호 US-0094928 (1993-07-22)
우선권정보 JP-0252711 (1988-10-06); JP-0000148 (1989-01-05); JP-0090209 (1989-04-10)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 12  인용 특허 : 0
초록

N neural networks having different set-values are provided, where N is an integer greater than 2. Each neural network has plurality of artificial neurons and processes information. An optimal output detecting circuit receives outputs of the N neural networks and determines the optimal one of the neural networks based on the outputs of the N neural networks. An output circuit receives and outputs the output of the neural network detected by the optimal output detecting circuit.

대표
청구항

A neural network system comprising: N neural networks having different set-values which define operations of the N neural networks, said set-values being arbitrarily settable, where N is an integer greater than 1, each having a plurality of artificial neurons arranged in rows and columns, an output of each artificial neuron being fed-back to other artificial neurons of the same row and column, said N neural networks operating in parallel; first means, connected to said N neural networks, for receiving outputs of said N neural networks, obtaining energy f...

이 특허를 인용한 특허 피인용횟수: 12

  1. Swenson Richard M. (Ridgecrest CA). Artificial neural system with binary weighting by equal resistor network. USP1997045625752.
  2. Rajamani Ravi ; Chbat Nicolas Wadih ; Ashley Todd Alan. Controller with neural network for estimating gas turbine internal cycle parameters. USP1999015857321.
  3. Nakahira Hiroyuki (Osaka JPX) Maruyama Masakatsu (Osaka JPX) Sakiyama Shiro (Osaka JPX) Maruno Susumu (Osaka JPX) Kouda Toshiyuki (Nara JPX) Fukuda Masaru (Osaka JPX). Information processing apparatus for implementing neural network. USP1997045621862.
  4. Ulyanov, Sergei V.; Panfilov, Sergei; Kurawaki, Ichiro; Hagiwira, Takahide. Intelligent mechatronic control suspension system based on soft computing. USP2004036701236.
  5. Fujii,Shigeru; Watanabe,Hitoshi; Panfilov,Sergey A.; Takahashi,Kazuki; Ulyanov,Sergey V.. Intelligent robust control system for motorcycle using soft computing optimizer. USP2007077251638.
  6. Schneegaβ, Daniel; Udluft, Steffen. Method for computer-aided control and/or regulation using two neural networks wherein the second neural network models a quality function and can be used to control a gas turbine. USP2013058447706.
  7. Loewenthal Kenneth H. ; Bryant Steven M.. Neural network optical character recognition system and method for classifying characters in a moving web. USP1998015712922.
  8. Werbos, Paul J.. Neural networks for intelligent control. USP2005046882992.
  9. Starzyk,Janusz A.. Self-organizing data driven learning hardware with local interconnections. USP2007117293002.
  10. Panfilov,Sergey A.; Litvintseva,Ludmila; Ulyanov,Sergey V.; Ulyanov,Viktor S.; Takahashi,Kazuki. Soft computing optimizer of intelligent control system structures. USP2007057219087.
  11. Sergei V. Ulyanov IT. System for intelligent control based on soft computing. USP2002076415272.
  12. Ulyanov, Sergei V.. System for intelligent control based on soft computing. USP2004046721718.