$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Neural network with learning function based on simulated annealing and Monte-Carlo method

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) G06F-001/00   
미국특허분류(USC) 395/23 ; 395/24
출원번호 US-0038100 (1993-03-30)
우선권정보 JP-0074488 (1992-03-30)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 14  인용 특허 : 0
초록

A neural network with a learning function which does not require the backward propagation of the signals for the learning, which is applicable for a case involving the feedback of the synapses or the loop formed by the synapses, and which enables the construction of a large scale neural network by using compact and inexpensive circuit elements. An evaluation value is calculated according to a difference between each output signal of the network and a corresponding teacher signal; a manner of updating the synapse weight factor of each synapse is determine...

대표
청구항

A neural network device with a learning function, comprising: a network formed of a plurality of neurons interconnected by a plurality of synapses, each synapse having a synapse weight factor, said network having a plurality of output signals; comparison means for calculating an evaluation value according to a difference between each output signal of the network and a corresponding teacher signal; and inspection means for determining a manner of updating the synapse weight factor of said each synapse according to an evaluation value change between a pres...

이 특허를 인용한 특허 피인용횟수: 14

  1. Francisco Jose Ayala. Adaptive neural learning system. USP2002076424961.
  2. Levin, Michael. Coupling of rational agents to quantum processes. USP2015119189744.
  3. Murai Kazumasa,JPX. Data converting apparatus and coefficient determining apparatus for use therewith. USP2001106304863.
  4. Repici, Dominic John. Feedback-tolerant method and device producing weight-adjustment factors for pre-synaptic neurons in artificial neural networks. USP2010107814038.
  5. Kaburagi Hiroshi,JPX ; Yamagata Shigeo,JPX ; Ichikawa Hiroyuki,JPX. Image processing apparatus and method. USP1998095805738.
  6. Hunzinger, Jason Frank; Chan, Victor Hokkiu. Learning spike timing precision. USP2015069064215.
  7. Hunzinger, Jason Frank; Levin, Jeffrey A.. Method and apparatus for modeling neural resource based synaptic placticity. USP2014128909575.
  8. Hunzinger, Jason Frank. Method and apparatus for neural learning of natural multi-spike trains in spiking neural networks. USP2015089111224.
  9. Chan, Victor Hokkiu; Hunzinger, Jason Frank; Behabadi, Bardia Fallah. Method and apparatus for neural temporal coding, learning and recognition. USP2015099147155.
  10. Hunzinger, Jason Frank; Chan, Victor Hokkiu; Levin, Jeffrey Alexander. Method and apparatus for structural delay plasticity in spiking neural networks. USP2015079092735.
  11. Hunzinger, Jason Frank; Chan, Victor Hokkiu. Method and apparatus of robust neural temporal coding, learning and cell recruitments for memory using oscillation. USP2015069053428.
  12. Ayala,Francisco J.. Method, system and computer program for developing cortical algorithms. USP2009027493295.
  13. Ahn Seung K. (Seoul KRX) Wang Bo H. (Seoul KRX) Ko Seok B. (Seoul KRX) Lee Yoon K. (Seoul KRX). Neural network and method for operating the same. USP1997055634063.
  14. Ayala,Francisco J.. System and method for developing artificial intelligence. USP2006117139740.