$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Baffle-cooled wall part

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) F01D-005/18   
미국특허분류(USC) 416/96A ; 416/97 ; R
출원번호 US-0510307 (1995-08-02)
우선권정보 DE-4430302 (1994-08-26)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 29  인용 특허 : 8
초록

A baffle cooling arrangement for wall parts includes a wall having a wall part to be cooled, a carrier having an inner and an outer surface, the inner surface of the carrier being arranged at a distance from the wall part, and multiple baffle tubes are provided. The baffle tubes each have an inlet end and an outlet end. The inlet ends of the baffle tubes are arranged over an area on the outer surface of the carrier and the outlet ends of the baffle tubes are directed toward the wall part, the tubes extending into a space between the inner surface of the ...

대표
청구항

A baffle cooling arrangement for wall parts, comprising; a wall having a wall part to be cooled; a carrier having an inner and an outer surface, the inner surface of the carrier being arranged at a distance from the wall part; and a plurality of baffle tubes, the baffle tubes each having an inlet end and an outlet end, the inlet ends of the baffle tubes being arranged over an area on the outer surface of the carrier and the outlet ends of the baffle tubes being directed toward the wall part, the tubes extending into a space between the inner surface of t...

이 특허를 인용한 특허 피인용횟수: 29

  1. Dailey, Geoffrey M.; Son, Changmin. Air impingement cooling system. USP2004026688110.
  2. Gregg, Shawn J.; Propheter-Hinckley, Tracy A.; Learned, Amanda Jean. Airflow influencing airfoil feature array. USP2013018348613.
  3. Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Dutta, Sandip; Schick, David Edward. Article and method of forming an article. USP20190410253986.
  4. Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Schick, David Edward. Article and method of forming an article. USP20181010087776.
  5. Lacy, Benjamin Paul; Itzel, Gary Michael; Kottilingam, Srikanth Chandrudu; Dutta, Sandip; Schick, David Edward. Article, component, and method of forming an article. USP2018059976441.
  6. Lee, Ching-Pang; Marra, John J.; Merrill, Gary B.; Heneveld, Benjamin E.; Klinger, Jill. Component cooling channel. USP2017019551227.
  7. Lee, Ching-Pang; Marra, John J.; Merrill, Gary B.; Heneveld, Benjamin E.; Klinger, Jill. Component cooling channel. USP2014078764394.
  8. Campbell, Christian X.; Lee, Ching-Pang. Component having cooling channel with hourglass cross section. USP2015049017027.
  9. Van Der Tempel, Leendert; Lammers, Jeroen Herman; Van Os, Petrus Johannes Maria. Cooling device utilizing internal synthetic jets. USP2017089726201.
  10. Bunker Ronald Scott. Cooling for double-wall structures. USP1999126000908.
  11. Nakamata, Chiyuki; Yamane, Takashi; Fukuyama, Yoshitaka; Bamba, Takahiro. Cooling structure of turbine airfoil. USP2015099133717.
  12. Chokshi, Jaisukhlal V.; Smith, Craig F.; Figueroa, Carlos G.; George, Larry C.. Flow sleeve impingement cooling baffles. USP2012108291711.
  13. Chokshi, Jaisukhlal V.; Smith, Craig F.; Figueroa, Carlos G.; George, Larry C.. Flow sleeve impingement cooling baffles. USP2014088794006.
  14. Chokshi, Jaisukhlal V.; Smith, Craig F.; Figueroa, Carlos G.. Flow sleeve impingement cooling using a plenum ring. USP2012058166764.
  15. Spokoiny, Michael; Kerner, James M.; Qiu, Xinliang; Maurus, James W.; Spokoyny, Boris M.. Fluid-operated heat transfer device. USP2011087992625.
  16. Spangler, Brandon W.. Gas turbine engine airfoil baffle. USP2016059353631.
  17. Spangler, Brandon W.; Mongillo, Dominic J.. Gas turbine engine component having trip strips. USP20180610006295.
  18. Srinivasan, Balamurugan; Narayanan, Sridharan Reghupathy; Paramanandam, Karthikeyan; Jayamurugan, Chandiran; Malak, Malak Fouad. Gas turbine engines with improved leading edge airfoil cooling. USP20181110119404.
  19. Senior Peter,GBX. High efficiency heat transfer structure. USP2000096122917.
  20. Lee Ching-Pang. Internally grooved turbine wall. USP2000116142734.
  21. Proehl, Andrew M.; Servan-Schreiber, Franklin; Kim, Anne. Method and apparatus for displaying an electronic program guide. USP2003066577350.
  22. Haselbach, Frank; Janke, Erik; Taege, Jens; Janetzke, Timm; Nitsche, Wolfgang; Reyer, Matthias. Method for impingement air cooling for gas turbines. USP2012048152463.
  23. Lee, Ching-Pang; Morrison, Jay A.. Method of fabricating a nearwall nozzle impingement cooled component for an internal combustion engine. USP2014038667682.
  24. Dede, Ercan Mehmet. Power modules, cooling devices and methods thereof. USP2012118305755.
  25. Morrison, Jay A.; Lee, Ching-Pang; Crawford, Michael E.. Regeneratively cooled transition duct with transversely buffered impingement nozzles. USP2015049010125.
  26. Lee, Ching-Pang. Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles. USP2016059347324.
  27. Gordon Anderson CH; Jorgen Ferber DE; Rainer Hocker DE; Fathi Tarada CH; Bernhard Weigand DE. Turbine blade wall section cooled by an impact flow. USP2002086439846.
  28. Abuaf Nesim NMN ; Brzozowski Steven Joseph. Turbulated cooling passages for turbine blades. USP1999115975850.
  29. Ekkad, Srinath Varadarajan; Esposito, Eric Ian; Kim, Yong Weon. Zero-cross-flow impingement via an array of differing length, extended ports. USP2012038127553.