$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Process and apparatus for treating inner surface treatment of chamber and vacuum chamber 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • B08B-009/00
출원번호 US-0405768 (1995-03-17)
우선권정보 JP-0047061 (1994-03-17)
발명자 / 주소
  • Kobari Toshiaki (Ibaraki-ken JPX) Hirano Nobuo (Ibaraki-ken JPX) Matsumoto Manabu (Ibaraki-ken JPX) Katane Mamoru (Hitachi JPX) Sakurabata Hiroaki (Hitachi JPX) Matsuzaki Shiro (Hitachi JPX)
출원인 / 주소
  • Hitachi, Ltd. (JPX 03)
인용정보 피인용 횟수 : 100  인용 특허 : 0

초록

A rod driver is used to drive a rod so as to move a broach through a continuous vacuum chamber in the axial direction. The broach is provided at the leading end of the rod with cutting and finishing edges at a plurality of stages in the axial direction. The cutting edges each have chip breakers in t

대표청구항

A process for treating an inner surface of a vacuum chamber comprising the steps of contacting at least one cutting edge of a broach with the inner surface, cutting off a contaminated layer on the inner surface with cutouts in an outer periphery of the broach with relative movement in an axial direc

이 특허를 인용한 특허 (100)

  1. Sanghoon Shim,KRX ; Jongchel Lee,KRX, Apparatus for eliminating sludge in pipes.
  2. Ruebel, Nick; Michaud, Susan L.; Amato, Mark R.; Reno, Jillian; Lee, W. Davis; Bennett, James P., Auto-updated and implemented radiation treatment plan apparatus and method of use thereof.
  3. Balakin, Vladimir; Balakin, Pavel, Cancer surface searing apparatus and method of use thereof.
  4. Balakin, Vladimir, Carbon ion beam injector apparatus and method of use thereof.
  5. Balakin, Vladimir; Valyaev, Yury, Charged particle accelerator magnet apparatus and method of use thereof.
  6. Balakin, Vladimir, Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system.
  7. Balakin, Vladimir, Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system.
  8. Balakin, Vladimir, Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system.
  9. Balakin, Vladimir, Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system.
  10. Balakin, Vladimir Yegorovich, Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system.
  11. Balakin, Vladimir, Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system.
  12. Balakin, Vladimir Yegorovich, Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system.
  13. Balakin, Vladimir Yegorovich, Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system.
  14. Balakin, Vladimir, Charged particle cancer therapy X-ray method and apparatus.
  15. Balakin, Vladimir, Charged particle cancer therapy and patient breath monitoring method and apparatus.
  16. Balakin, Vladimir, Charged particle cancer therapy and patient positioning method and apparatus.
  17. Balakin, Vladimir, Charged particle cancer therapy beam path control method and apparatus.
  18. Balakin, Vladimir Yegorovich, Charged particle cancer therapy beam path control method and apparatus.
  19. Lee, W. Davis; Michaud, Susan L.; Raymond, Daniel J.; Amato, Mark R., Charged particle cancer therapy beam state determination apparatus and method of use thereof.
  20. Balakin, Vladimir, Charged particle cancer therapy dose distribution method and apparatus.
  21. Balakin, Vladimir, Charged particle cancer therapy dose distribution method and apparatus.
  22. Balakin, Vladimir, Charged particle cancer therapy imaging method and apparatus.
  23. Balakin, Vladimir, Charged particle cancer therapy patient constraint apparatus and method of use thereof.
  24. Balakin, Vladimir, Charged particle cancer therapy patient positioning method and apparatus.
  25. Balakin, Vladimir, Charged particle cancer therapy patient positioning method and apparatus.
  26. Balakin, Vladimir, Charged particle cancer therapy patient positioning method and apparatus.
  27. Balakin, Vladimir Yegorovich, Charged particle cancer therapy patient positioning method and apparatus.
  28. Balakin, Vladimir, Charged particle cancer therapy system X-ray apparatus and method of use thereof.
  29. Balakin, Vladimir, Charged particle cancer therapy system magnet control method and apparatus.
  30. Balakin, Vladimir, Charged particle cancer therapy x-ray method and apparatus.
  31. Balakin, Vladimir, Charged particle extraction apparatus and method of use thereof.
  32. Lee, W. Davis; Spotts, Stephen L.; Michaud, Susan L., Charged particle state determination apparatus and method of use thereof.
  33. Balakin, Vladimir, Charged particle therapy patient constraint apparatus and method of use thereof.
  34. Michaud, Susan L.; Spotts, Stephen L., Charged particle translation slide control apparatus and method of use thereof.
  35. Michaud, Susan L.; Spotts, Stephen L.; Raymond, Daniel J., Charged particle translation slide control apparatus and method of use thereof.
  36. Balakin, Vladimir, Charged particle treatment, rapid patient positioning apparatus and method of use thereof.
  37. Michaud, Susan L.; Spotts, Stephen L.; Bennett, James P.; Lee, W. Davis, Charged particle—patient motion control system apparatus and method of use thereof.
  38. Tsai,Fu Hsiung, Cleaning assembly.
  39. Amato, Mark R.; Lee, W. Davis, Continuous ion beam kinetic energy dissipater apparatus and method of use thereof.
  40. Michaud, Susan L.; Raymond, Daniel J.; Lee, W. Davis, Dual rotation charged particle imaging / treatment apparatus and method of use thereof.
  41. Lee, W. Davis; Amato, Mark R.; Penfold, Scott, Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof.
  42. Balakin, Vladimir, Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system.
  43. Balakin, Vladimir, Fast magnet method and apparatus used in conjunction with a charged particle cancer therapy system.
  44. Lee, W. Davis; Amato, Mark R.; Ruebel, Nick; Reno, Jillian; Michaud, Susan L., Fiducial marker/cancer imaging and treatment apparatus and method of use thereof.
  45. Michaud, Susan L.; Raymond, Daniel J.; Lee, W. Davis, Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof.
  46. Bennett, James P.; Spotts, Stephen L.; Lee, W. Davis; Michaud, Susan L., Integrated cancer therapy—imaging apparatus and method of use thereof.
  47. Balakin, Vladimir, Integrated tomography—cancer treatment apparatus and method of use thereof.
  48. Michaud, Susan L.; Raymond, Daniel J.; Lee, W. Davis, Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof.
  49. Balakin, Vladimir, Intensity control of a charged particle beam extracted from a synchrotron.
  50. Balakin, Vladimir, Intensity modulated three-dimensional radiation scanning method and apparatus.
  51. Curry, James E.; Farris, Robert D., Internet long distance telephone service.
  52. Lee, W. Davis; Amato, Mark R.; Bennett, James P., Ion beam extraction apparatus and method of use thereof.
  53. Balakin, Vladimir, Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system.
  54. Balakin, Vladimir, Ion source method and apparatus used in conjunction with a charged particle cancer therapy system.
  55. Balakin, Vladimir, Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system.
  56. Balakin, Vladimir, Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system.
  57. Balakin, Vladimir, Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system.
  58. Balakin, Vladimir, Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods.
  59. Balakin, Vladimir, Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron.
  60. Balakin, Vladimir, Multi-axis charged particle cancer therapy method and apparatus.
  61. Balakin, Vladimir Yegorovich, Multi-axis charged particle cancer therapy method and apparatus.
  62. Balakin, Vladimir, Multi-axis/multi-field charged particle cancer therapy method and apparatus.
  63. Balakin, Vladimir, Multi-axis/multi-field charged particle cancer therapy method and apparatus.
  64. Balakin, Vladimir, Multi-field cancer therapy apparatus and method of use thereof.
  65. Balakin, Vladimir, Multi-field charged particle cancer therapy method and apparatus.
  66. Balakin, Vladimir Egorovich, Multi-field charged particle cancer therapy method and apparatus.
  67. Balakin, Vladimir Yegorovich, Multi-field charged particle cancer therapy method and apparatus.
  68. Balakin, Vladimir, Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration.
  69. Balakin, Vladimir, Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration.
  70. Lee, W. Davis; Reno, Jillian; Bennett, James P., Multiple beamline position isocenterless positively charged particle cancer therapy apparatus and method of use thereof.
  71. Balakin, Vladimir, Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system.
  72. Voit, Eric A.; Balkovich, Edward E.; Goodman, William D.; Gadre, Jayant G.; White, Patrick E.; Young, David E., Network session management for telephony over hybrid networks.
  73. Voit, Eric A.; Balkovich, Edward E.; Goodman, William D.; Gadre, Jayant G.; White, Patrick E.; Young, David E., Network session management for telephony over hybrid networks.
  74. Farris, Robert D.; Voit, Eric A., Packet data network voice call quality monitoring.
  75. Balakin, Vladimir, Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy.
  76. Michaud, Susan L.; Raymond, Daniel J.; Spotts, Stephen L., Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof.
  77. Balakin, Vladimir, Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system.
  78. Balakin, Vladimir, Proton tomography apparatus and method of operation therefor.
  79. Cristoforo Benvenuti FR, Pumping device by non-vaporisable getter and method for using this getter.
  80. Balakin, Vladimir, RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system.
  81. Spotts, Stephen L.; Lee, W. Davis; Bennett, James P., Redundant charged particle state determination apparatus and method of use thereof.
  82. Balakin, Vladimir, Rotatable targeting magnet apparatus and method of use thereof in conjunction with a charged particle cancer therapy system.
  83. Lee, W. Davis; Amato, Mark R.; Spotts, Stephen L.; Bennett, James P., Scintillation array apparatus and method of use thereof.
  84. Balakin, Vladimir, Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system.
  85. Balakin, Vladimir, Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system.
  86. Balakin, Vladimir, Synchrotron energy control apparatus and method of use thereof.
  87. Balakin, Vladimir, Synchrotron power cycling apparatus and method of use thereof.
  88. Balakin, Vladimir, Synchrotron power supply apparatus and method of use thereof.
  89. Balakin, Vladimir, Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system.
  90. Balakin, Vladimir, Tandem charged particle accelerator including carbon ion beam injector and carbon stripping foil.
  91. White, Patrick E.; Farris, Robert D., Telephone service via packet-switched networking.
  92. Farris, Robert D.; Bartholomew, Dale L., Telephony communication via varied redundant networks.
  93. Farris,Robert D.; Bartholomew,Dale L., Telephony communication via varied redundant networks.
  94. Balakin, Vladimir, Treatment delivery control system and method of operation thereof.
  95. Spotts, Stephen L., Treatment delivery control system and method of operation thereof.
  96. Voit, Eric A.; Curry, James E.; Farris, Robert D., Voice call alternative routing through PSTN and internet networks.
  97. Penfold, Scott; Lee, W. Davis; Amato, Mark R., X-ray detector for proton transit detection apparatus and method of use thereof.
  98. Balakin, Vladimir Yegorovich, X-ray method and apparatus used in conjunction with a charged particle cancer therapy system.
  99. Balakin, Vladimir, X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system.
  100. Balakin, Vladimir, X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로