$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Optical scanner for reading and decoding one- and two-dimensional symbologies at variable depths of field 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G02B-026/08
  • G06K-007/10
출원번호 US-0569728 (1995-12-08)
발명자 / 주소
  • Roustaei Alexander R.
  • Fisher Donald
출원인 / 주소
  • Symbol Technologies, Inc.
대리인 / 주소
    Brown, Martin, Haller & McClain
인용정보 피인용 횟수 : 374  인용 특허 : 0

초록

An optical device for reading one- and two-dimensional symbologies at variable depths of field, the device including a light source for projecting an emitted light towards the two-dimensional image and an optical assembly, or zoom lens, with dual field of view capability for focusing light reflected

대표청구항

[ We claim:] [1.] An optical scanning device for reading a one- or two-dimensional symbology having a first width, said optical scanning device comprising:at least one printed circuit board having a front edge with a second width;a light source mounted on said at least one printed circuit board, sai

이 특허를 인용한 특허 (374)

  1. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Mi, AUTOMATICALLY-ACTIVATED HAND-SUPPORTABLE 2-D BAR CODE SYMBOL READING SYSTEM EMPLOYING A LINEAR LASER SCANNING PATTERN GENERATOR, AN AUTOMATIC BAR CODE SYMBOL DATA DETECTOR, AUDIBLE DATA CAPTURE FEEDB.
  2. McVicker,Henry J., Apparatus and method for obtaining an image of an arcuate surface.
  3. Piva, Marco; Bianchi, Maurizio, Apparatus and method for reading an optical code.
  4. Piva, Marco; Bianchi, Maurizio, Apparatus and method for reading an optical code.
  5. Piva, Marco; Bianchi, Maurizio, Apparatus and method for reading an optical code.
  6. Massieu,Jean Louis, Apparatus for diagonal progressive scanning video and method of improving aiming visibility, reducing tilt dependence and improving read range.
  7. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  8. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  9. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  10. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  11. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  12. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system.
  13. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system.
  14. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations.
  15. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations.
  16. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Mikhail; Zhu, Xiaoxun, Automatic digital video image capture and processing system supporting image-processing based code symbol reading during a pass-through mode of system operation at a retail point of sale (POS) station.
  17. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatic digital video-imaging based code symbol reading system employing illumination and imaging subsystems controlled within a control loop maintained as long as a code symbol has not been successfully read and the object is detected in the field of view of the system.
  18. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatic digital-imaging based bar code symbol reading system supporting a pass-through mode of system operation using automatic object direction detection and illumination control, and video image capture and processing techniques.
  19. Kotlarsky,Anatoly; Au,Ka Man; Veksland,Michael; Zhu,Xiaoxun; Meagher,Mark; Good,Timothy; Hou,Richard; Hu,Daniel, Automatic digital-imaging based bar code symbol reading system supporting pass-through and presentation modes of system operation using automatic object direction detection and illumination control, and video image capture and processing techniques.
  20. Kotlarsky,Anatoly; Au,Ka Man; Veksland,Michael; Zhu,Xiaoxun; Meagher,Mark; Good,Timothy; Hou,Richard; Hu,Daniel, Automatic digital-imaging based code symbol reading system supporting pass-through and presentation modes of system operation using automatic object direction detection, narrow-area and wide-area illumination control, and narrow-area and wide-area video image capture and processing techniques.
  21. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Automatic hand-supportable image-based bar code symbol reader having image-processing based bar code reading subsystem employing simple decode image processing operations applied in an outwardly-directed manner referenced from the center of a captured narrow-area digital image of an object bearing a 1D bar code symbol.
  22. Kotlarsky,Anatoly; Au,Ka Man; Veksland,Michael; Zhu,Xiaoxun; Meagher,Mark; Good,Timothy; Hou,Richard; Hu,Daniel, Automatic imaging-based code symbol reading system supporting a multi-tier modular software architecture, automatic illumination control, and video image capture and processing techniques.
  23. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic omnidirectional bar code symbol reading system employing linear-type and area-type bar code symbol reading stations within the system housing.
  24. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic omnidirectional bar code symbol reading system employing linear-type and area-type bar code symbol reading stations within the system housing.
  25. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatic point-of-sale based code symbol reading system employing automatic object motion detection and illumination control, and digital video image capturing and processing techniques.
  26. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D., Automatic vehicle identification (AVI) system employing planar laser illumination and imaging (PLIIM) based subsystems.
  27. Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D., Automatic vehicle identification and classification (AVIC) system employing a tunnel-arrangement of PLIIM-based subsystems.
  28. Wilz, Sr., David M.; Rockstein, George B.; Blake, Robert E.; Schmidt, Mark; Russell, Garrett; Hudrick, Donald T.; Colavito, Stephen J.; Knowles, Carl Harry, Automatically-activated body-wearable laser scanning bar code symbol reading system having data-transmission activation switch.
  29. Wilz, Sr., David M.; Rockstein, George B.; Blake, Robert E.; Schmidt, Mark; Russell, Garrett; Hudrick, Donald T.; Colavito, Stephen J.; Knowles, Carl Harry, Automatically-activated code symbol reading system.
  30. Wilz, Sr.,David M.; Rockstein,George B.; Blake,Robert E.; Schmidt,Mark; Russell,Garrett; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,Carl Harry, Automatically-activated hand-supportable laser scanning bar code symbol reading system with data transmission activation switch.
  31. Wilz, Sr.,David M.; Rockstein,George; Blake,Robert E.; Schmidt,Mark; Russell,Garrett; Knowles,C. Harry, Automatically-activated hand-supportable laser scanning bar code symbol reading system with data transmission activation switch.
  32. Wilz, Sr.,David M.; Russell,Garrett; Schmidt,Mark C.; Veksland,Mikhail; Martin,William; Giordano,Patrick; Edmonds,Shane; DiPlacido,Kevin; Defoney,Shawn; Colavito,Stephen; Hudrick,Donald; Osborn,James; Amundsen,Thomas; Hejl,Benjamin, Automatically-activated hand-supportable omni-directional laser scanning bar code symbol reader having a user-selectable linear scanning menu-reading mode supported by a omni-directional laser scanning pattern having temporally varying intensity characteristics for improved bar code symbol navigation and alignment during menu-reading operations.
  33. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Min; Wang,Lin; Hu,Meng; Jin,Hongjian; Ji,MingQing; Shi,Shamei; Au,Ka Man; Giordano,Patrick, Automatically-activated laser scanning 2D bar code symbol reading system employing a visible linear-type laser scanning pattern and an audible feedback signal during scan data capturing and buffering operations.
  34. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Min; Wang,Lin; Hu,Meng; Jin,Hongjian; Ji,MingQing; Shi,Shamei; Au,Ka Man; Giordano,Patrick, Automatically-activated wireless hand-supportable laser scanning bar code symbol reading system with automatic communication range dependent control.
  35. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Mi, Automatically-activated wireless hand-supportable laser scanning bar code symbol reading system with data transmission activation switch and automatic communication range dependent control.
  36. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Min; Wang,Lin; Hu,Meng; Jin,Hongjian; Ji,MingQing; Shi,Shamei; Au,Ka Man; Giordano,Patrick, Automatically-activated wireless laser scanning 2D bar code symbol reading system capable of automatically transmitting stored symbol character data when the hand-supportable unit is operated within its RF data communication range and automatically collecting and storing symbol character data when the hand-supportable unit is operated outside of its RF data communication range.
  37. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Mikhail; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatically-triggered digital video imaging based code symbol reading system employing illumination and imaging subsystems controlled in response to real-time image quality analysis.
  38. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Automatically-triggered digital video-imaging based code symbol reading system for use in a point-of-sale (POS) environment.
  39. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Automatically-triggered digital video-imaging based code symbol reading system supporting dynamically controlled object illumination and digital video-imaging operations.
  40. Patel,Mehul; Bianculli,Thomas D.; Carlson,Bradley S.; Shi,David Tsi; Fratianni,Edmond L.; Kuriakose,Eldho; Chiocchio,Jerry; Preuss,Walter; Curry,Daniel C., Bar code reader including linear sensor array and hybrid camera and bar code reader.
  41. Wang, Ynjiun; Havens, William H., Bar code reading device with global electronic shutter control.
  42. Nieh, Kai-Wei; Shih, Tung-Hsiu, Battery charging apparatus and method.
  43. Liang, Jiuh-Ming; Nieh, Kai-Wei, Battery with protective packaging.
  44. Tsikos,Constantine J.; Knowles,C. Harry, Bioptical product and produce identification systems employing planar laser illumination and imaging (PLIM) based subsystems.
  45. Liu, Xinqiao; Lim, Suk Hwan; Gamal, Abbas El, CMOS image sensor system with self-reset digital pixel architecture for improving SNR and dynamic range.
  46. Egger, Christoph; Nopper, Richard; Reichenbach, Jurgen, Camera and method for the detection of objects.
  47. Juds,Scott, Coaligned bar codes and validation means.
  48. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Mikhail; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Code symbol reading system.
  49. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy, Compact bar code symbol reading system employing a complex of coplanar illumination and imaging stations for omni-directional imaging of objects within a 3D imaging volume.
  50. Lapstun, Paul; Silverbrook, Kia, Computer system control with user data via interface surface and processing sensor.
  51. Grossinger, Nadav; Romano, Nitay; Gratch, Arnon, Controllable optical sensing.
  52. Grossinger, Nadav; Romano, Nitay; Gratch, Arnon, Controllable optical sensing.
  53. Mueller, George G.; Lys, Ihor A.; Dowling, Kevin J.; Cella, Charles H.; Morgan, Frederick M., Controlled lighting methods and apparatus.
  54. Chaleff, Edward I.; Brobst, Thomas J.; Skokowski, Jr., Richard J., Coplanar camera scanning system.
  55. Chaleff, Edward I.; Brobst, Thomas J.; Skokowski, Jr., Richard J., Coplanar camera scanning system.
  56. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Coplanar laser illumination and imaging subsystem employing spectral-mixing and despeckling of laser illumination.
  57. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDs disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field.
  58. Powell, George; Hoobler, Ryan; Lei, Ming; Russell, Garrett; Ashby, Mark, Creating a virtual bar code from a physical bar code.
  59. Powell, George; Hoobler, Ryan; Lei, Ming; Russell, Garrett; Ashby, Mark, Creating a virtual bar code from a physical bar code.
  60. Matherson,Kevin; Staudacher,David J., Dark frame subtraction using compression.
  61. Nelson David J. ; Bryant Robert C. ; Leidig Carl F., Data reader and reader system having visible centerless targeting.
  62. Meier, Timothy P.; Gardiner, Robert C.; Harper, Jeffrey Dean; Izzo, John; Koziol, Thomas J.; Longacre, Jr., Andrew; Pettinelli, Jr., John A., Decoder board for an optical reader utilizing a plurality of imaging formats.
  63. Meier, Timothy P.; Gardiner, Robert C.; Harper, Jeffrey Dean; Izzo, John; Koziol, Thomas J.; Longacre, Jr., Andrew; Pettinelli, Jr., John A., Decoder board for an optical reader utilizing a plurality of imaging formats.
  64. Meier,Timothy P.; Gardiner,Robert C.; Harper,Jeffrey D.; Izzo,John; Koziol,Thomas J.; Longacre, Jr.,Andrew; Pettinelli,John, Decoder board for an optical reader utilizing a plurality of imaging formats.
  65. Liu, Rong; Barkan, Edward D.; Wang, Dayou, Decoding barcodes displayed on cell phone.
  66. Meier, Timothy P.; Gardiner, Robert C.; Harper, Jeffrey D.; Izzo, John; Koziol, Thomas J.; Longacre, Jr., Andrew; Pettinelli, John A., Decoding utilizing image data.
  67. Meier, Timothy P; Gardiner, Robert C.; Harper, Jeffrey Dean; Izzo, John; Koziol, Thomas J.; Longacre, Jr., Andrew; Pettinelli, John A., Decoding utilizing image data.
  68. Moed, Michael C; Tremblay, Robert T; Gerst, III, Carl W; Equitz, William, Deformable light pattern for machine vision system.
  69. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Device for optically multiplexing a laser beam.
  70. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Device for producing a laser beam of reduced coherency using high-frequency modulation of the laser diode current and optical multiplexing of the output laser beam.
  71. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Digital illumination and imaging subsystem employing despeckling mechanism employing high-frequency modulation of laser diode drive current and optical beam multiplexing techniques.
  72. Schnee, Michael D.; Zhu, Xiaoxun; Knowles, Carl Harry, Digital image acquisition system capable of compensating for changes in relative object velocity.
  73. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Digital image capture and processing engine employing optical waveguide technology for collecting and guiding LED-based illumination during object illumination and image capture modes of operation.
  74. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing a linear LED-based illumination array mounted behind an illumination-focusing lens component integrated within the imaging window of the system.
  75. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Digital image capture and processing system employing a micro-computing platform with an event-driven multi-tier modular software architecture and supporting an image-processing based illumination metering program for automatically adjusting illumination during object illumination and imaging operations.
  76. Kotlarsky, Anatoly; Zhu, Xiaoxun; Au, Ka Man, Digital image capture and processing system employing a multi-mode illumination subsystem adaptable to ambient illumination levels.
  77. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Digital image capture and processing system employing an illumination subassembly mounted about a light transmission aperture, and a field of view folding mirror disposed beneath the light transmission aperture.
  78. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; Foney, Shawn De; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing an image formation and detection subsystem having an area-type image detection array supporting periodic occurrance of snap-shot type image acquisition cycles at a high-repetition rate during object illumination.
  79. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing an image formation and detection subsystem having image formation optics providing a field of view (FOV) on an area-type image detection array, and a multi-mode illumination subsystem having near and far field LED-based illumination arrays for illuminating near and far field portions of said FOV.
  80. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing an image formation and detection system having an area-type image detection array supporting single snap-shot and periodic snap-shot modes of image acquisition during object illumination and imaging operations.
  81. Kotlarsky, Anatoly; Zhu, Xiaoxun, Digital image capture and processing system employing multi-layer software-based system architecture permitting modification and/or extension of system features and functions by way of third party code plug-ins.
  82. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Digital image capture and processing system employing real-time analysis of image exposure quality and the reconfiguration of system control parameters based on the results of such exposure quality analysis.
  83. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system having a printed circuit (PC) board with a light transmission aperture, wherein an image detection array is mounted on the rear side of said PC board, and a linear array of light emitting diodes (LEDS) is mounted on the front surface of said PC board, and aligned with an illumination-focusing lens structure integrated within said imaging window.
  84. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system having a printed circuit (PC) board with light transmission aperture, wherein first and second field of view (FOV) folding mirrors project the FOV of a digital image detection array on the rear surface of said PC board, through said light transmission aperture.
  85. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system having a single printed circuit (PC) board with a light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDs) are mounted on the rear side of the PC board for producing a linear targeting illumination beam, and wherein a second linear array of visible LEDs are mounted on the front side of said PC board for producing a field of visible illumination within the field of view (FOV) of the system.
  86. , Digital image capture and processing system having automatic illumination measurement and control capabilities realized using a photodetector operating independently of the image sensing array, and an image-processing based illumination metering program for automatically adjusting the illumination duration of the system during object illumination and imaging operations.
  87. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system supporting a periodic snapshot mode of operation wherein during each image acquisition cycle, the rows of image detection elements in the image detection array are exposed simultaneously to illumination.
  88. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system supporting a presentation mode of system operation which employs a combination of video and snapshot modes of image detection array operation during a single cycle of system operation.
  89. Knowles, C. Harry; Zhu, Xiaoxun; Xian, Tao, Digital image capturing and processing system employing a plurality of area-type illuminating and imaging stations projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume, and controlling operations therewithin using.
  90. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital image capturing and processing system employing a plurality of coplanar illuminating and imaging stations projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume so as to support pass-through and presentation modes of digital imaging at a point of sale (POS) environment.
  91. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital image capturing and processing system employing a plurality of coplanar illuminating and imaging stations projecting a plurality of coplanar illumination and imaging planes into a 3D imaging volume, and controlling operations therewithin using control data derived from motion data collected from the automated detection of objects passing through said 3D imaging volume.
  92. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly; Ghosh, Sankar; Schnee, Michael; Spatafore, Pasqual; Amundsen, Thomas; Byun, Sung; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Digital image capturing and processing system employing an area-type image sensing array exposed to narrow-band illumination from a narrow-band illumination subsystem for a time duration controlled using a photodetector operated independently from said area-type image sensing array.
  93. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Digital image capturing and processing system employing an image capturing and processing module and an integrated electronic weigh scale module having a load cell centrally located with respect to said image capturing and processing module.
  94. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Digital image capturing and processing system employing automatic object detection and spectral-mixing based illumination techniques.
  95. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael, Digital image capturing and processing system employing coplanar illumination and imaging stations which generate coplanar illumination and imaging planes only when and where an object is being moved within the 3D imaging volume.
  96. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy, Digital image capturing and processing system employing imaging window protection plate having an aperture pattern and being disposed over said imaging window and beneath which resides a plurality of coplanar illumination and imaging stations.
  97. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Digital image capturing and processing system for automatically recognizing objects in a POS environment.
  98. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Digital image capturing and processing system for producing and projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion and velocity of object.
  99. Knowles, C. Harry; Zhu, Xiaoxun; Xian, Tao, Digital image capturing and processing system for producing and projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion of objects present therewithin.
  100. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Digital image capturing and processing system having a plurality of coplanar illumination and imaging subsystems, each employing a dual-type coplanar linear illumination and imaging engine that supports image-processing based object motion and velocity detection, and automatic image formation and detection along the coplanar illumination and imaging plane produced thereby.
  101. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly, Digital image capturing and processing system producing narrow-band illumination when image sensor elements in a state of integration, and simultaneously detecting narrow-band illumination using an area-type image sensor and independently-operated photo-detector.
  102. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Digital image-based bar code symbol reading system employing a multi-mode image-processing symbol reading subsystem.
  103. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Digital imaging-based bar code symbol driven portable data terminal system.
  104. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Digital imaging-based bar code symbol reader employing an LED-based illumination subsystem driven by an automatic light exposure measurement and illumination control subsystem.
  105. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Digital imaging-based bar code symbol reading system employing a multi-mode illumination subsystem with far-field and near field led-based illumination arrays.
  106. Kotlarsky,Anatoly; Au,Ka Man; Zhu,Xiaoxun, Digital imaging-based bar code symbol reading system employing image cropping pattern generator and automatic cropped image processor.
  107. Kotlarsky, Anatoly; Zhu, Xiaoxun, Digital imaging-based code symbol reading system permitting modification of system features and functionalities.
  108. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  109. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  110. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  111. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  112. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Tao,Xi; Kotlarsky,Anatoly; Russell,Garrett; Knowles,C. Harry, Digital-imaging based code symbol reading system employing a micro-computing platform supporting an event-driven multi-tier modular software architecture.
  113. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital-imaging based code symbol reading system employing a plurality of coplanar illumination and imaging subsystems, each having a local object motion detection subsystem for automatic detecting objects within the 3D imaging volume, and a local control subsystem for transmitting object detection state data to a global control subsystem for managing the state of operation of said coplanar illumination and imaging subsystems.
  114. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital-imaging based code symbol reading system employing a plurality of coplanar illumination and imaging subsystems, global object motion detection subsystem for automatically detecting objects within its 3D imaging volume, and global control subsystem for managing the state of operation of said coplanar illumination and imaging substems.
  115. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Digital-imaging based code symbol reading system employing an event-driven multi-tier modular software architecture and supporting automatic operating system login and loading of code symbol reading application.
  116. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Tao, Xi; Kotlarsky, Anatoly; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Digital-imaging code symbol reading system supporting automatic programming of system parameters for automatic configuration of said system in hands-on and hands-free modes of operation.
  117. Liu, Jian Qiang; Sun, Xiao Dong; Duan, Ming Heo, Display having integrated light emitting material.
  118. Zoladz, JR.,Edward M.; Huettner,Josef; Wanninger,Mario; Zeiler,Markus; Steegmueller,Ulrich, Document validator subassembly.
  119. Silverbrook, Kia, Electronic pen for interacting with substrate.
  120. Liu,Jian Qiang; Sun,Xiao Dong, Emission of visible light in response to absorption of excitation light.
  121. Harris,Rodney C.; Youngers,Kevin, End-of-travel focus shift in an optical image scanner.
  122. Youngers,Kevin J., End-of-travel focus shift in an optical image scanner.
  123. Sun,Xiao Dong; Liu,Jian Qiang, Excitation light emission apparatus.
  124. Tsikos, Constantine J.; Knowles, C. Harry; Wirth, Allan; Jankevics, Andrew; Good, Timothy A., GENERALIZED METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND PARTICULAR FORMS OF APPARATUS THEREFOR BASED ON REDUCING THE SPATIAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM AFTER IT ILLUMINATES THE.
  125. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Ghosh, Sankar, HAND-SUPPORTABLE PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) BASED CAMERA SYSTEM CAPABLE OF PRODUCING DIGITAL LINEAR IMAGES OF A OBJECT, CONTAINING PIXELS HAVING A SUBSTANTIALLY UNIFORM WHITE LEVEL.
  126. Tsikos,Constantine J.; Knowles,C. Harry; Zhu,Xiaoxun; Schnee,Michael D.; Au,Ka Man; Ghosh,Sankar, HAND-SUPPORTABLE PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) BASED CAMERA SYSTEM CAPABLE OF PRODUCING DIGITAL LINEAR IMAGES OF AN OBJECT, CONTAINING PIXELS HAVING A SUBSTANTIALLY UNIFORM ASPECT-RAT.
  127. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Wirth, Allan; Good, Timothy A., HAND-SUPPORTABLE PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) DEVICE EMPLOYING A PAIR OF LINEAR LASER DIODE ARRAYS MOUNTED ABOUT AN AREA IMAGE DETECTION ARRAY, FOR ILLUMINATING AN OBJECT TO BE IMAGE.
  128. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-suportable imaging-based bar code symbol reader employing an automatic light exposure measurement and illumination control subsystem for measuring illumination exposure on CMOS image sensing arr.
  129. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Hand-supportable LED-based planar illumination and imaging system.
  130. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Hand-supportable code symbol reader employing coplanar laser illumination and linear imaging.
  131. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Hand-supportable code symbol reader employing coplanar laser illumination and linear imaging.
  132. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Hand-supportable digital image capture and processing system employing visible targeting illumination beam projected from an array of visible light sources on the rear surface of a printed circuit (PC) board having a light transmission aperture, and reflected off multiple folding mirrors and projected through the light transmission aperture into a central portion of the field of view of said system.
  133. Kotlarsky, Anatoly; Zhu, Xiaoxun, Hand-supportable digital image capture and processing system supporting a multi-tier modular software architecture.
  134. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly, Hand-supportable digital image capturing and processing system employing an area-type image sensing array exposed to illumination from an LED-based illumination array only when all sensor elements in said image-sensing array are activated and in a state of integration.
  135. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly; Ghosh, Sankar; Schnee, Michael; Spatafore, Pasqual; Amundsen, Thomas; Byun, Sung; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Hand-supportable digital image-processing based bar code symbol reading system employing image cropping zone (ICZ) framing and post-image capture cropping.
  136. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable digital imaging-based bar code reading system wherein, during each imaging cycle, a single frame of pixel data is automatically detected by a CMOS area-type image sensing array when substantially all rows of pixels therein are in a state of integration and have a common integration time, and then pixel data is transmitted from said CMOS area-type image sensing array into a FIFO buffer, and then mapped into memory for subsequent image processing.
  137. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable digital imaging-based bar code symbol reader employing an event-driven system control subsystem, automatic IR-based object detection, and trigger-switch activated image capture and processing subsystem.
  138. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supportable digital imaging-based bar code symbol reader supporting narrow-area and wide-area modes of illumination and image capture.
  139. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable digital imaging-based bar code symbol reading system automatically processing captured images along parallel virtual scan lines based on the maximum pixel height of the region of interest (ROI).
  140. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable digital imaging-based bar code symbol reading system employing a method of intelligently illuminating an object so as to generate a digital image thereof which is substantially free of noise caused by specular-type reflection.
  141. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supportable digital imaging-based bar codes symbol reader employing multi-mode subsystems.
  142. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable image-based bar code symbol reader employing helically-sweeping feature-extraction analysis on a captured digital image of an object referenced from the center thereof.
  143. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable imaging based bar code symbol reader employing automatic light exposure measurement and illumination control subsystem integrated therein.
  144. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable imaging-based auto-discriminating 1D/2D bar code symbol reader employing a multi-mode image processing bar code symbol reading subsystem having a plurality of modes of operation which are dynamically reconfigurable in response to real-time image analysis.
  145. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable imaging-based bar code symbol reader capable of exposing an automatically detected object to a field of narrow-band LED-based illumination only when substantially all rows of pixels in a CMOS image sensing array are in a state of integration.
  146. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supportable imaging-based bar code symbol reader employing a CMOS-type image sensing array in combination with a band-pass optical filter subsystem, narrow-band illumination subsystem, and autom.
  147. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable imaging-based bar code symbol reader employing a CMOS-type image sensor using global exposure techniques.
  148. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supportable imaging-based bar code symbol reader employing a tri-mode led-based illumination subsystem.
  149. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supportable imaging-based bar code symbol reader employing automatic object presence and range detection to control the generation of near-field and far-field wide-area illumination during bar c.
  150. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Tao,Xi; Kotlarsky,Anatoly; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable imaging-based bar code symbol reader having a multi-mode bar code symbol image processor dynamically reconfigurable in response to real-time image processing operations carried out on captured images.
  151. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supportable multi-mode digital imaging-based bar code symbol reader employing an automatic illumination and exposure control subsystem that automatically controls the operation of a multi-mode l.
  152. Tsikos, Constantine J.; Knowles, C. Harry; Schnee, Michael D.; Good, Timothy A., Hand-supportable planar laser illumination and imaging (PLIIM) device.
  153. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Hand-supportable planar laser illumination and imaging (PLIIM) device for producing a planar laser illumination beam (PLIB) coplanar with the field of view (FOV) of a linear image detection array.
  154. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Wirth, Allan; Jankevics, Andrew; Knowles, Carl Harry, Hand-supportable planar linear illumination and imaging (PLIIM) based code symbol reading system.
  155. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable semi-automatic digital imaging-based bar code symbol reading system realized upon a multi-tier modular software platform.
  156. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supportable semi-automatic imaging-based bar code reading system wherein an led-based illumination subsystem automatically illuminates a detected target object in a narrow-area field of illumina.
  157. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Hand-supported imaging-based bar code symbol reader employing a multi-mode image-processing based bar code reading subsystem with modular image-processing architecture.
  158. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Ghosh, Sankar; Naylor, Charles A.; Amundsen, Thomas; Blake, Robert; Svedas, William; Defoney, Shawn; Skypala, Edward; Vatan, Pirooz; Dobbs, Russell Joseph; Kolis, George; Schmidt, Mark C.; Yorsz, Jeffery; Giordano, Patrick A.; Colavito, Stephen J.; Wilz, Sr., David W.; Schwartz, Barry E.; Kim, Steven Y.; Fisher, Dale; Tassell, Jon Van, Hand-supported planar laser illumination and imaging (PLIIM) based systems with laser despeckling mechanisms integrated therein.
  159. Olmstead, Bryan L.; Shearin, Alan, High-resolution optical code imaging using a color imager.
  160. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Au, Ka Man; Schwartz, Barry E., INTERNET-BASED METHOD OF AND SYSTEM FOR REMOTELY MONITORING, CONFIGURING AND SERVICING PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) BASED NETWORKS WITH NODES FOR SUPPORTING OBJECT IDENTIFICATION AND.
  161. Kotlarsky, Anatoly; Zhu, Xiaoxun, Image capture and processing system supporting a multi-tier modular software architecture.
  162. Kotlarsky, Anatoly; Zhu, Xiaoxun, Image capture and processing system supporting a multi-tier modular software architecture.
  163. Kotlarsky, Anatoly; Zhu, Xiaoxun, Image capture and processing system supporting a multi-tier modular software architecture.
  164. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  165. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  166. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  167. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  168. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  169. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  170. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  171. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  172. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  173. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  174. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  175. Tochigi,Nobuyuki, Image reading apparatus.
  176. Fukumoto,Hiroshi; Fukuda,Mitsuhiko, Image reading apparatus with partially shielded light-receiving elements.
  177. Aikawa Toshiya,JPX ; Ochiai Toru,JPX ; Araki Yoshitaka,JPX ; Maeda Eisaku,JPX ; Fujinawa Nobuhiro,JPX ; Ito Nobukazu,JPX ; Nagata Hideya,JPX ; Tsuchihashi Hidehisa,JPX ; Suzuki Maki,JPX ; Morimatsu S, Image reading device and method.
  178. Aikawa, Toshiya; Ochiai, Toru; Maeda, Eisaku; Suzuki, Maki, Image reading device and method.
  179. Hennick,Robert J.; Lacey,Michael P.; Hinkley,Robert C.; McCall,Melvin D., Image sensor assembly for optical reader.
  180. Schwartz, Eric D.; Beckhusen, Gerard; Hennick, Robert J.; Hinkley, Robert C.; Hubben, Edward B.; Hunter, Vivian L.; Jovanovski, Brian L.; Lacey, Michael P.; McCall, Melvin D., Image sensor assembly for optical reader.
  181. Hennick, Robert J.; Barber, Charles P.; Coleman, Eric C.; Ehrhart, Michael A.; Gannon, Colleen P.; Gardiner, Robert C.; Havens, William H.; Hunter, Vivian L.; McCall, Melvin D.; Ruhlman, Thomas, Image sensor based optical reader.
  182. Hennick, Robert John; Barber, Charles P.; Coleman, Eric C.; Ehrhart, Michael A.; Gannon, Colleen; Gardiner, Robert C.; Havens, William H.; Hunter, Vivian L.; McCall, Melvin D.; Ruhlman, Thomas, Image sensor based optical reader.
  183. Hennick, Robert John; Barber, Charles P.; Coleman, Eric C.; Ehrhart, Michael A.; Gannon, Colleen; Gardiner, Robert C.; Havens, William H.; Hunter, Vivian L.; McCall, Melvin D.; Ruhlman, Thomas, Image sensor based optical reader.
  184. Wang, Ynjiun Paul, Imaging apparatus comprising image sensor array having shared global shutter circuitry.
  185. Wang, Ynjiun Paul, Imaging apparatus comprising image sensor array having shared global shutter circuitry.
  186. Wang, Ynjiun Paul, Imaging apparatus comprising image sensor array having shared global shutter circuitry.
  187. Schnee, Michael D.; Zhu, Xiaoxun; Knowles, C. Harry, Imaging engine employing planar light illumination and linear imaging.
  188. Schnee,Michael D.; Zhu,Xiaoxun; Knowles,C. Harry, Imaging engine employing planar light illumination and linear imaging.
  189. Barber,Charles P.; Gerst, III,Carl W.; Hunter,Vivian L.; McCall,Melvin D.; Hahn,Bruce L., Imaging module for optical reader.
  190. Barber,Charles P.; Gerst, III,Carl W.; Hunter,Vivian L.; McCall,Melvin D.; Hahn,Bruce L., Imaging module for optical reader.
  191. Bremer, Edward C.; Havens, William H.; Feng, Chen; Wang, Ynjiun P., Indicia reading terminal having multiple exposure periods and methods for same.
  192. Li, Jianhua; Wang, Ynjiun P.; Feng, Chen; Havens, William H., Indicia reading terminal having multiple setting imaging lens.
  193. Wang, Ynjiun P.; Deng, Shulan, Indicia reading terminal including frame quality evaluation processing.
  194. Bremer, Edward C.; Havens, William H.; Feng, Chen; Wang, Ynjiun P., Indicia reading terminal operative for processing of frames having plurality of frame featurizations.
  195. Wang, Ynjiun P.; Bremer, Edward C.; Feng, Chen; Gannon, Colleen P.; Havens, William H.; Li, Jianhua; Meier, Timothy P., Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation.
  196. Wang, Ynjiun P.; Bremer, Edward C.; Feng, Chen; Gannon, Colleen P.; Havens, William H.; Li, Jianhua; Meier, Timothy P., Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation.
  197. Katz, Joseph; Tan, Chinh; Goren, David; Stern, Miklos; Barkan, Ed; Shepard, Howard; Wood, Frederick, Integrated bar code scanner and communications module.
  198. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Mikhail; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Intelligent system for automatically recognizing objects at a point of sale (POS) station by omni-directional imaging of the objects using a complex of coplanar illumination and imaging subsystems.
  199. Silverbrook, Kia, Interactive system including substrate and electronic pen with retractable nib.
  200. Tsikos,Constantine J.; Knowles,C. Harry; Zhu,Xiaoxun; Schnee,Michael D.; Good,Timothy A.; Amundsen,Thomas; Schmidt,Mark C.; Giordano,Patrick A., LED-based planar light illumination and imaging (PLIIM) engine.
  201. Shih, Tung-Hsiu; Nieh, Kai Wei; Krasnov, Victor; Liang, Jiuh-Ming, Laminated lithium battery.
  202. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Laser beam despeckling devices.
  203. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Laser beam generation system employing a laser diode and high-frequency modulation circuitry mounted on a flexible circuit.
  204. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Laser illumination beam generation system employing despeckling of the laser beam using high-frequency modulation of the laser diode current and optical multiplexing of the component laser beams.
  205. Tullis Barclay J., Laser-array based digital illuminator.
  206. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Good, Timothy A.; Ghosh, Sankar; Amundsen, Thomas, Led-based planar light illumination and imaging (PLIIM) based camera system employing real-time object coordinate acquisition and producing to control automatic zoom and focus imaging optics.
  207. Tsikos,Constantine J.; Good,Timothy A.; Schnee,Michael D.; Zhu,Xiaoxun; Amundsen,Thomas; Knowles,C. Harry, Led-based planar light illumination and imaging (PLIIM) systems.
  208. Good, Timothy A.; Amundsen, Thomas; Knowles, C. Harry, Led-based planar light illumination beam generation module employing a focal lens for reducing the image size of the light emmiting surface of the led prior to beam collimation and planarization.
  209. David A Fussell ; James W. Gibboney, Jr., Lens system for enhancing LED light output.
  210. Sun,Xiao Dong; Liu,Jian Qiang, Light emitting material integrated into a substantially transparent substrate.
  211. Sato, Kenichi, Light modulation panel and imaging lens.
  212. Shih, Tung-Hsiu; Nieh, Kai Wei; Krasnov, Victor; Liang, Jiuh-Ming, Lithium battery having low leakage anode.
  213. Liang, Jiuh-Ming, Localized heat treatment of battery component films.
  214. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Ghosh, Sankar, METHOD OF AND APPARATUS FOR AUTOMATICALLY COMPENSATING FOR VIEWING-ANGLE DISTORTION IN DIGITAL LINEAR IMAGES OF OBJECT SURFACES MOVING PAST A PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) BASED CAMER.
  215. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Au, Ka Man; Ghosh, Sankar, METHOD OF AND APPARATUS FOR AUTOMATICALLY CROPPING CAPTURED LINEAR IMAGES OF A MOVING OBJECT PRIOR TO IMAGE PROCESSING USING REGION OF INTEREST (ROI) COORDINATE SPECIFICATIONS CAPTURED BY AN OBJECT P.
  216. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , METHOD OF AND APPARATUS FOR PROCESSING CAPTURED DIGITAL IMAGES OF OBJECTS WITHIN A SEMI-AUTOMATIC HAND-SUPPORTABLE IMAGING-BASED BAR CODE SYMBOL READER SO AS TO READ 1D AND/OR 2D BAR CODE SYMBOLS GRA.
  217. Zhu,Xiaoxun, METHOD OF AND APPARATUS FOR PRODUCING A DIGITAL IMAGE OF AN OBJECT WITH REDUCED SPECKLE-PATTERN NOISE, BY CONSECUTIVELY CAPTURING, BUFFERING AND PROCESSING A SERIES OF DIGITAL IMAGES OF THE OBJECT OV.
  218. Tsikos, Constantine J.; Knowles, C. Harry; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFOR BASED ON REDUCING THE SPATIAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM BEFORE IT ILLUMINATES THE TARGET OBJECT BY APPLYING SPAT.
  219. Tsikos, Constatine J.; Knowles, C. Harry; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFOR BASED ON REDUCING THE SPATIAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM BEFORE IT ILLUMINATES THE TARGET OBJECT BY APPLYING SPAT.
  220. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Wirth, Allan; Jankevics, Andrew; Knowles, Carl Harry, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFOR BASED ON REDUCING THE SPATIAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM BEFORE THE BEAM ILLUMINATES THE TARGET OBJECT BY APPLYIN.
  221. Tsikos,Constantine J.; Knowles,C. Harry; Wirth,Allan; Good,Timothy A.; Jankevics,Andrew, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFOR BASED ON REDUCING THE TEMPORAL COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM BEFORE IT ILLUMINATES THE TARGET OBJECT BY APPLYING TEM.
  222. Tsikos, Constantine J.; Knowles, C. Harry; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFOR BASED ON REDUCING THE TEMPORAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM (PLIB) AFTER IT ILLUMINATES THE TARGET BY APPLYING TEMP.
  223. Tsikos, Constantine J.; Knowles, C. Harry; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFOR BASED ON REDUCING THE TEMPORAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM BEFORE IT ILLUMINATES THE TARGET OBJECT BY APPLYING TEM.
  224. Tsikos, Constantine J.; Knowles, C. Harry; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFOR BASED ON REDUCING THE TEMPORAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM BEFORE IT ILLUMINATES THE TARGET OBJECT BY APPLYING TEM.
  225. Tsikos,Constantine J.; Knowles,C. Harry; Zhu,Xiaoxun; Schnee,Michael D.; Au,Ka Man; Ghosh,Sankar, METHOD OF SPECKLE-NOISE PATTERN REDUCTION AND APPARATUS THEREFORE BASED ON REDUCING THE TEMPORAL-COHERENCE OF THE PLANAR LASER ILLUMINATION BEAM BEFORE IT ILLUMINATES THE TARGET OBJECT BY APPLYING TE.
  226. Wang, Weng-Chung; Nieh, Kai-Wei, Manufacturing method for thin film battery.
  227. Mangerson Mark M., Media scanner.
  228. Mangerson, Mark M., Media scanner.
  229. Havens, William H.; Hammond, Charles M., Method and apparatus for extending operating range of bar code scanner.
  230. Ackley H. Sprague, Method and apparatus for printing laminated bar code symbols and other symbols suffering from specular reflection distortions.
  231. Kanzler, Kurt, Method and apparatus for transformation of a gaussian laser beam to a far field diffraction pattern.
  232. DiCarlo, Jeffrey M.; Liu, Xinqiao; Wandell, Brian; El Gamal, Abbas, Method for improving SNR in low illumination conditions in a CMOS video sensor system using a self-resetting digital pixel.
  233. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Method for intelligently controlling the illumination and imagine of objects as they are moved through the 3D imaging volume of a digital image capturing and processing system.
  234. Benedetti, Michele, Method for locating the transitions between the elements of a bar code.
  235. Lapstun, Paul; Silverbrook, Kia, Method for managing information.
  236. Longacre, Jr., Andrew, Method for omnidirectional processing of 2D images including recognizable characters.
  237. Longacre, Jr., Andrew, Method for omnidirectional processing of 2D images including recognizable characters.
  238. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Schmidt, Mark; Ciarlante, Nicola, Method of and apparatus for identifying consumer products in a retail environment when bar code symbols on the products are not readable or have been removed from packaging.
  239. Tsikos,Constantine J.; Schnee,Michael D.; Zhu,Xiaoxun; Amundsen,Thomas; Naylor,Charles A.; Dobbs,Russell Joseph; Wirth,Allan; Jankevics,Andrew; Knowles,Carl Harry, Method of and apparatus for reducing speckle-pattern noise in a planar laser illumination and imaging (PLIIM) based system.
  240. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Ghosh, Sankar; Amundsen, Thomas, Method of and system for automatically producing digital images of a moving object, with pixels having a substantially uniform white level independent of the velocity of said moving object.
  241. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Ghosh, Sankar; Amundsen, Thomas, Method of and system for automatically producing digital images of a moving object, with pixels having a substantially uniform white level independent of the velocity of said moving object.
  242. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Ghosh, Sankar; Naylor, Charles A.; Amundsen, Thomas; Blake,, Method of and system for automatically producing digital images of moving objects, with pixels having a substantially uniform white level independent of the velocities of the moving objects.
  243. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Method of and system for determining the lower limit of decoding resolution in an imaging-based bar code symbol reader.
  244. Vatan, Pirooz; Knowles, C. Harry; Zhu, Xiaoxun; Tsikos, Constantine J., Method of and system for producing high-resolution 3-D images of 3-D object surfaces having arbitrary surface geometry.
  245. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Method of and system for producing images of objects using planar laser illumination beams and image detection arrays.
  246. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Wirth, Allan; Jankevics, Andrew; Knowles, Carl Harry, Method of and system for producing images of objects using planar laser illumination beams and image detection arrays.
  247. Knowles,C. Harry; Schnee,Michael; Zhu,Xiaoxun, Method of and system for profile equalization employing visible laser diode (VLD) displacement.
  248. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Furlong, John, Method of and system for returning a consumer product in a retail environment so as to prevent or reduce employee theft, as well as provide greater accountability for returned merchandise in retail store environments.
  249. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Method of automatically reading code symbols on objects present within the field of view (FOV) of a hand-supportable digital-imaging based code symbol reader, by simultaneously projecting an image cropping zone (ICZ) framing pattern and a field of illumination within the FOV during object illumination and imaging operations.
  250. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Method of blocking a portion of illumination rays generated by a countertop-supported digital imaging system, and preventing illumination rays from striking the eyes of the system operator or nearby consumers during operation of said countertop-supported digital image capture and processing system installed at a retail point of sale (POS) station.
  251. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system.
  252. Schmidt,Mark; Russell,Garrett K.; Knowles,C. Harry; Zhu,Xiaoxun; Au,Ka Man; Xu,Congwei; Liu,Liang; Ji,Kai; Zhang,Wuqing, Method of developing an application program for running on a wireless portable data terminal (PDT).
  253. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of driving a plurality of visible and invisible LEDs so as to produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power during object illumination and imaging operations.
  254. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Method of dynamically controlling illumination and image capturing operations in a digital image capture and processing system.
  255. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Method of dynamically managing system control parameters in a digital image capture and processing system.
  256. Lapstun, Paul; Silverbrook, Kia, Method of enabling interaction with computer software.
  257. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Method of extending the working distance of a planar laser illumination and imaging system without increasing the output power of the visible laser diode (VLD) sources employed there.
  258. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of illuminating objects at a point of sale (POS) station by adaptively controlling the spectral composition of the wide-area illumination beam produced from an illumination subsystem within an automatic digital image capture and processing system.
  259. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of illuminating objects during digital image capture operations by mixing visible and invisible spectral illumination energy at point of sale (POS) environments.
  260. Kotlarsky, Anatoly; Zhu, Xiaoxun, Method of modifying and/or extending the standard features and functions of a digital image capture and processing system.
  261. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; , Method of performing auto-discrimination of 1D/2D bar code symbologies in a semi-automatic hand-supportable imaging-based bar code symbol reader having narrow-area and wide-area image capture modes o.
  262. Tsikos,Constantine J.; Schnee,Michael D.; Zhu,Xiaoxun; Amundsen,Thomas; Naylor,Charles A.; Dobbs,Russell Joseph; Wirth,Allan; Jankevics,Andrew; Knowles,Carl Harry, Method of producing digital images of objects using planar laser illumination beams and electronic image detection arrays.
  263. Smith, Taylor; Kotlarsky, Anatoly; Wilz, Sr., David M.; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Murashka, Pavel, Method of programming the system configuration parameters of a digital image capture and processing system during the implementation of its communication interface with a host system without reading programming-type bar code symbols.
  264. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of reading bar code symbols on objects at a point-of-sale station by passing said objects through a complex of stationary coplanar illumination and imaging planes projected into a 3D imaging volume.
  265. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly; Ghosh, Sankar; Schnee, Michael; Spatafore, Pasqual; Amundsen, Thomas; Byun, Sung; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Method of reading bar code symbols using a digital-imaging based code symbol reading system employing an event-driven multi-tier modular software architecture and supporting automatic operating system login and loading of bar code symbol reading application.
  266. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Method of reading code symbols using a digital image capturing and processing system employing a micro-computing platform with an event-driven multi-tier software architecture.
  267. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Method of reading code symbols using a hand-supportable digital image capturing and processing device employing a micro-computing platform supporting an event-driven multi-tier modular software architecture.
  268. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Method of setting the time duration of illumination from an LED-based illumination array employed in a digital imaging-based code symbol reader, using an image-processing based illumination metering program executed therewithin.
  269. Kotlarsky, Anatoly; Au, Ka Man; Smith, Taylor; Mandal, Sudhin, Method of unlocking restricted extended classes of features and functionalities embodied within a digital image capture and processing system by reading feature/functionality-unlocking type code symbols.
  270. Wang, Ynjiun, Method utilizing digital picture taking optical reader having hybrid monochrome and color image sensor.
  271. Liu,Jian Qiang; Sun,Xiao Dong, Microstructures integrated into a transparent substrate which scatter incident light to display an image.
  272. Nunnink, Laurens; Reuter, Richard, Modular focus system alignment for image based readers.
  273. Nunnink, Laurens; Reuter, Richard, Modular focus system for image based code readers.
  274. Staudacher, David J.; Matherson, Kevin, Multi-pass dark frame subtraction.
  275. Sampsell, Jeffrey B.; Florence, James M.; Westerman, Larry Alan, Multi-segment light-emitting diode.
  276. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Schmidt, Mark, Network of digital image capturing systems installed at retail POS-based stations and serviced by a remote image processing server in communication therewith.
  277. Knowles, C. Harry; Schmidt, Mark C.; Fisher, Dale, Neutron-beam based scanning system having an automatic object identification and attribute information acquisition and linking mechanism integrated therein.
  278. Knowles,C. Harry; Schmidt,Mark C.; Fisher,Dale, Nuclear resonance based scanning system having an automatic object identification and attribute information acquisition and linking mechanism integrated therein.
  279. Knowles, C. Harry; Ghosh, Sankar; Defoney, Shawn; Skypala, Edward; Schmidt, Mark C., Object identification and attribute information acquisition and linking computer system.
  280. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Omni-directional digital image capturing and processing system comprising coplanar illumination and imaging stations automatically detecting object motion and velocity and adjusting exposure and/or illumination control parameters therewithin.
  281. Knowles, C. Harry; Good, Timothy; Zhu, Xiaoxun; Xian, Tao, Omni-directional digital image capturing and processing system employing coplanar illumination and imaging planes and area-type illumination and imaging zones with the horizontal and vertical sections of the system housing.
  282. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Omni-directional digital image capturing and processing system employing coplanar illumination and imaging planes and area-type illumination and imaging zones within the system housing.
  283. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Omni-directional digital image capturing and processing system employing coplanar illumination and imaging stations in horizontal and vertical housing sections of the system.
  284. Schwartz Eric D. ; Hubben Edward B. ; Jovanovski Brian L. ; Hunter Vivian L. ; McCall Melvin D., Optical assembly for barcode scanner.
  285. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Optical code symbol reading system employing an acoustic-waveguide structure for coupling sonic energy, produced from an electro-transducer, to sound wave ports formed in the system housing.
  286. Chou, Ming-Ta, Optical path folding element, imaging lens module and electronic device.
  287. Wang, Ynjiun P., Optical reader having reduced specular reflection read failures.
  288. Wang, Ynjiun P., Optical reader having reduced specular reflection read failures.
  289. Detwiler, Paul O., Optical scanner.
  290. Roustaei Alexander R., Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field.
  291. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Optical scanning system having an extended programming mode and method of unlocking restricted extended classes of features and functionalities embodied therewithin.
  292. Michaloski, Paul Francis, Optimization of focused spots for maskless lithography.
  293. Akel Khalid El,FRX ; Dumontier Christophe,FRX ; Reuze Patrick,FRX ; Thuries Serge,FRX ; Puech Jean-Michel,FRX ; Massieu Jean-Louis,FRX, Opto-electronic device for acquisition of images of codes in one and two dimensions.
  294. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Ghosh, Sankar, PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) BASED CAMERA SYSTEM FOR AUTOMATICALLY PRODUCING DIGITAL LINEAR IMAGES OF A MOVING OBJECT, CONTAINING PIXELS HAVING A SUBSTANTIALLY SQUARE ASPECT-RATIO IN.
  295. Tsikos,Constantine J.; Knowles,C. Harry; Good,Timothy A.; Giordano,Patrick A., PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) DEVICE EMPLOYING A LINEAR IMAGE DETECTION ARRAY HAVING VERTICALLY-ELONGATED IMAGE DETECTION ELEMENTS, WHEREIN THE HEIGHT OF THE VERTICALLY-ELONGATED IMAG.
  296. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxum; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, PLANAR LASER ILLUMINATION AND IMAGING (PLIIM) SYSTEM EMPLOYING LASER-DIODE BASED PLANAR LASER ILLUMINATION ARRAYS AND A LINEAR ELECTRONIC IMAGE DETECTION ARRAY EMPLOYING IMAGE FORMATION OPTICS THAT O.
  297. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Ghosh, Sankar; Naylor, Charles A.; Amundsen, Thomas; Blake,, PLANAR LIGHT ILLUMINATION AND IMAGING (PLIIM) BASED SYSTEM HAVING A LINEAR IMAGE DETECTION CHIP MOUNTING ASSEMBLY WITH MEANS FOR PREVENTING MISALIGNMENT BETWEEN THE FIELD OF VIEW (FOV) OF SAID LINEAR.
  298. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, POS-based digital image capturing and processing system employing automatic object motion detection and spectral-mixing based illumination techniques.
  299. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, POS-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques.
  300. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, POS-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques.
  301. Takhiri, Azar Mamed ogly; Zenovjev, Victor Valentinovich, Personal identification method, electronic identification system and apparatus for personal biometrical identification by gauging geometry of the person's hand.
  302. Tsikos, Constantine J.; Good, Timothy A.; Amundsen, Thomas; Knowles, C. Harry, Planar LED-based illumination array (PLIA) chips.
  303. Tsikos,Constantine J.; Knowles,C. Harry; Zhu,Xiaoxun; Vatan,Pirooz, Planar laser illumination and imaging (PLIIM) based camera system for producing high-resolution 3-D images of moving 3-D objects.
  304. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Ghosh, Sankar; Naylor, Charles A.; Amundsen, Thomas; Blake, Robert; Svedas, William; Defoney, Shawn; Skypala, Edward; Vatan, Pirooz; Dobbs, Russell Joseph; Kolis, George; Schmidt, Mark S.; Yorsz, Jeffery; Giordano, Patrick A.; Colavito, Stephen J.; Wilz, Sr., David W.; Schwartz, Barry E.; Kim, Steven Y.; Fisher, Dale; Van Tassell, Jon, Planar laser illumination and imaging (PLIIM) based engine.
  305. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Amundsen, Thomas; Schmidt, Mark C.; Giordano, Patrick A., Planar laser illumination and imaging (PLIIM) engine.
  306. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Planar laser illumination and imaging (PLIIM) system employing an area-type image detection array.
  307. Tsikos, Constantine J.; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Knowles, C. Harry, Planar laser illumination and imaging (PLIIM) system employing wavefront control methods for reducing the power of speckle-pattern noise digital images acquired by said system.
  308. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Planar laser illumination and imaging (PLIIM) systems.
  309. Tsikos,Constantine J.; Schnee,Michael D.; Zhu,Xiaoxun; Amundsen,Thomas; Naylor,Charles A.; Dobbs,Russell Joseph; Knowles,Carl Harry, Planar laser illumination and imaging (PLIIM) systems employing laser-diode based planar laser illumination arrays and linear electronic image detection arrays.
  310. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Ghosh, Sankar; Naylor, Charles A.; Amundsen, Thomas; Blake, Robert; Svedas, William; Defoney, Shawn; Skypala, Edward; Vatan, Pirooz; Dobbs, Russell Joseph; Kolis, George; Schmidt, Mark C.; Yorsz, Jeffery; Giordano, Patrick A.; Colavito, Stephen J.; Wilz, Sr., David W.; Schwartz, Barry E.; Kim, Steven Y.; Fisher, Dale; Tassell, Jon Van, Planar laser illumination and imaging (PLIIM) systems with integrated despeckling mechanisms provided therein.
  311. Giordano, Patrick; Colavito, Stephen; Wirth, Allan; Svedas, William; Good, Timothy A.; Jankevics, Andrew; Knowles, C. Harry; Tsikos, Constantine J., Planar laser illumination and imaging device employing laser current modulation to generate spectral components and reduce temporal coherence of laser beam, so as to achieve a reduction in speckle-pattern noise during time-averaged detection of images of objects illuminated thereby during imaging operations.
  312. Tsikos, Constantine J., Planar laser illumination and imaging module (PLIIN) based semiconductor chips.
  313. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John A.; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Planar laser illumination module (PLIM) employing high-frequency modulation (HFM) of the laser drive currents and optical multplexing of the output laser beams.
  314. Tsikos, Constantine J.; Schnee, Michael D.; Zhu, Xiaoxun; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Knowles, Carl Harry, Planar laser illumination modules (PLIMS) employed in a planar laser illumination and imaging (PLIIM) system.
  315. Tsikos,Constantine J.; Good,Timothy A.; Schnee,Michael D.; Zhu,Xiaoxun; Amundsen,Thomas; Knowles,C. Harry, Planar light illumination and imaging (PLIIM) systems employing LED-based planar light illumination arrays (PLIAS) and linear electronic image detection arrays.
  316. Giordano,Patrick; Colavito,Stephen; Wirth,Allan; Svedas,William; Good,Timothy A.; Jankevics,Andrew; Knowles,C. Harry; Tsikos,Constantine J., Planar light illumination and imaging device with modulated coherent illumination that reduces speckle noise induced by coherent illumination.
  317. Schnee,Michael D.; Zhu,Xiaoxun; Knowles,Carl Harry, Planar light illumination and linear imaging (PLILIM) device with image-based velocity detection and aspect ratio compensation.
  318. Nieh, Kai Wei; Liang, Jiuh-Ming; Krasnov, Victor, Plasma deposition on a partially formed battery through a mesh screen.
  319. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly, Portable digital image capturing and processing system employing an area-type image sensing array exposed to illumination produced from an LED-based illumination array and measured using a photodector operated independently from said area-type image sensing array.
  320. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Pos-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques.
  321. Knowles, C. Harry; Defoney, Shawn; Skypala, Edward; Schmidt, Mark C., Programmable data element queuing, handling, processing and linking device integrated into an object identification and attribute acquisition system.
  322. Li, Jianchao; Nieh, Kai-Wei; Makhar, Sandeep, Pulsed laser cutting of thin film battery.
  323. Shih, Tung-Hsiu; Nieh, Kai Wei; Krasnov, Victor, Pulsed mode apparatus with mismatched battery.
  324. Liang, Jiuh-Ming; Nieh, Kai Wei, Solid-state lithium battery with electrolyte.
  325. Nieh, Kai Wei; Liang, Jiuh-Ming; Krasnov, Victor, Sputtering lithium-containing material with multiple targets.
  326. Liu,Jianqiang; Sun,Xiao Dong, System and method for a transparent color image display utilizing fluorescence conversion of nano particles and molecules.
  327. Patel,Mehul; Brock,Christopher; Trajkovic,Miroslav; Hatton,Edward; Sackett,William, System and method for aiming an optical code scanning device.
  328. Rudeen, Robert W., System and method of optical code reading.
  329. Rudeen, Robert W.; Olmstead, Bryan L., System and method of optical reading employing virtual scan lines.
  330. Rudeen, Robert W.; Olmstead, Bryan L., System and method of optical reading employing virtual scan lines.
  331. Wang, Ynjiun; Havens, William H., System and method to automatically focus an image reader.
  332. Lapstun,Paul; Silverbrook,Kia, System for allowing interaction with computer software.
  333. Schnee,Michael, System for detecting image light intensity reflected off an object in a digital imaging-based bar code symbol reading device.
  334. Lapstun, Paul; Silverbrook, Kia, System for generating print data providing interaction with computer software.
  335. Lapstun, Paul; Silverbrook, Kia, System for interaction with computer system.
  336. Lapstun, Paul; Silverbrook, Kia, System for printing coded data providing interaction with computer software.
  337. Lorton Christopher W. ; Griner James C. ; Jones ; III Creed F. ; Williams Richard P. ; Rystrom Larry ; Orrell ; III James D., System for reading data glyphs.
  338. Lorton Christopher W. ; Griner James C. ; Jones ; III Creed F. ; Williams Richard P. ; Rystrom Larry ; Orrell ; III James D., System for reading data glyphs.
  339. Roustaei, Alexander R., System for reading two-dimensional images using ambient and/or projected light.
  340. Lapstun, Paul; Silverbrook, Kia, System having printer and sensing device for interaction with computer software.
  341. Lapstun, Paul; Silverbrook, Kia, System having sensing device for interaction with computer software.
  342. Harris, Rodney C.; Spears, Kurt E., Systems and methods for providing multiple object planes in an optical image scanner.
  343. Harris,Rodney C.; Spears,Kurt E., Systems and methods for providing multiple object planes in an optical image scanner.
  344. Harris,Rodney C.; Spears,Kurt E., Systems and methods for providing multiple object planes in an optical image scanning environment.
  345. Cherry, Craig Douglas, Systems and methods for selectively masking a scan volume of a data reader.
  346. Gao, WenLiang, Systems and methods of optical code reading using a color imager.
  347. Gao, WenLiang, Systems and methods of optical code reading using a color imager.
  348. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Au, Ka Man; Ghosh, Sankar, TUNNEL-BASED METHOD OF AND SYSTEM FOR IDENTIFYING TRANSPORTED PACKAGES EMPLOYING THE TRANSMISSION OF PACKAGE DIMENSION DATA OVER A DATA COMMUNICATIONS NETWORK AND THE TRANSFORMATION OF PACKAGE DIMENS.
  349. Liang, Jiuh-Ming, Thin film battery and localized heat treatment.
  350. Krasnov, Victor; Nieh, Kai-Wei; Li, Jianchao, Thin film battery and manufacturing method.
  351. Nieh, Kai-Wei; Li, Jianchao; Shih, Tung-Hsiu, Thin film battery fabrication using laser shaping.
  352. Liang, Jiuh-Ming; Nieh, Kai Wei, Thin film battery packaging formed by localized heating.
  353. Li, Jianchao; Nieh, Kai-Wei; Makhar, Sandeep, Thin film battery substrate cutting and fabrication process.
  354. Krasnov, Victor; Nieh, Kai-Wei, Thin film battery with electrical connector connecting battery cells.
  355. Krasnov, Victor; Nieh, Kai-Wei, Thin film battery with protective packaging.
  356. Krasnov, Victor; Nieh, Kai-Wei, Thin film battery with protective packaging.
  357. Tsikos, Constantine J.; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Kim, Steve Y.; Amundsen, Thomas; Naylor, Charles A.; Dobbs, Russell Joseph; Giordano, Patrick A.; Yorsz, Jeffery; Schmidt, Mark S.; Colavito, Stephen J.; Wilz, Sr., David M.; Au, Ka Man; Svedas, William; Ghosh, Sankar; Schnee, Michael D.; Zhu, Xiaoxun; Knowles, C. Harry, Tunnel-based object identification and dimensioning system.
  358. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Ghosh, Sankar; Naylor, Charles A.; Amundsen, Thomas; Blake, Robert; Svedas, William; Defoney, Shawn; Skypala, Edward; Vatan, Pirooz; Dobbs, Russell Joseph; Kolis, George; Schmidt, Mark C.; Yorsz, Jeffery; Giordano, Patrick A.; Colavito, Stephen J.; Wilz, Sr., David W.; Schwartz, Barry E.; Kim, Steven Y.; Fisher, Dale; Tassell, Jon Van, Tunnel-type digital imaging system for use within retail shopping environments such as supermarkets.
  359. Tsikos, Constantine J.; Knowles, C. Harry; Zhu, Xiaoxun; Schnee, Michael D.; Au, Ka Man; Wirth, Allan; Good, Timothy A.; Jankevics, Andrew; Ghosh, Sankar; Naylor, Charles A.; Amundsen, Thomas; Blake, Robert; Svedas, William; Defoney, Shawn; Skypala, Edward; Vatan, Pirooz; Dobbs, Russell Joseph; Kolis, George; Schmidt, Mark C.; Yorsz, Jeffery; Giordano, Patrick A.; Colavito, Stephen J.; Wilz, Sr., David W.; Schwartz, Barry E.; Kim, Steven Y.; Fisher, Dale; Van Tassell, Jon, Tunnel-type digital imaging system for use within retail shopping environments such as supermarkets.
  360. Knowles, C. Harry; Kim, Steven Y., Tunnel-type package identification system having a remote image keying station with an ethernet-over-fiber-optic data communication link.
  361. Nunnink, Laurens, Vision system camera with mount for multiple lens types.
  362. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Mi, WIRELESS BAR CODE SYMBOL READING SYSTEM CAPABLE OF AUTOMATICALLY COLLECTING AND STORING SYMBOL CHARACTER DATA WHEN HAND-SUPPORTABLE UNIT IS OPERATED OUTSIDE OF ITS RF DATA COMMUNICATION RANGE, AND AU.
  363. Liu, Jian-Qiang; Sun, Xiao-Dong, Waveguide display.
  364. Liu, Jian-Qiang; Sun, Xiao-Dong, Waveguide display.
  365. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Mi, Wireless automatic laser scanning bar code symbol reading system, wherein the RF-based transceiver chipsets within the wireless hand-supportable unit and base station thereof are automatically deacti.
  366. Schmidt, Mark; Russell, Garrett K.; Knowles, C. Harry; Zhu, Xiaoxun; Au, Ka Man; Xu, Congwei; Liu, Liang; Ji, Kai; Zhang, Wuqing, Wireless bar code symbol driven portable data terminal (PDT) system adapted for single handed operation.
  367. Schmidt,Mark; Russell,Garrett; Witz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Mi, Wireless bar code symbol reading system employing a base station with a cradle having a hinged support hooks for enabling vertical and horizontal installations.
  368. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Min; Wang,Lin; Hu,Meng; Jin,Hongjian; Ji,MingQing; Shi,Shamei; Au,Ka Man; Giordano,Patrick, Wireless bar code symbol reading system having hand-supportable unit and remote base station.
  369. Schmidt, Mark; Russell, Garrett; Wilz, Sr., David M.; Blake, Robert; Hudrick, Donald T.; Colavito, Stephen J.; Knowles, C. Harry; Rockstein, George; Zhu, Xiaoxun; Bonanno, John; Byun, Sung; Xu, Congwei; Jiang, Min; Wang, Lin; Hu, Meng; Jin, Hongjian; Ji, MingQing; Shi, Shamei; Au, Ka Man; Giordano, Patrick, Wireless code symbol reading system with automatic communication range dependent control.
  370. Schmidt,Mark; Russell,Garrett; Wilz, Sr.,David M.; Blake,Robert; Hudrick,Donald T.; Colavito,Stephen J.; Knowles,C. Harry; Rockstein,George; Zhu,Xiaoxun; Bonanno,John; Byun,Sung; Xu,Congwei; Jiang,Mi, Wireless laser scanning bar code symbol reading system employing a low-battery protection circuit, vibrational alarm and sleep mode of operation.
  371. Knowles,C. Harry; Schmidt,Mark C.; Fisher,Dale, X-radiation scanning system having an automatic object identification and attribute information acquisition and linking mechanism integrated therein.
  372. Shaw, Elizabeth C., XML-based barcode scanner.
  373. Shaw, Elizabeth C., XML-based barcode scanner.
  374. Kotlarsky, Anatoly; Zhu, Xiaoxun, digital image capturing and processing system allowing third-parties to extend the features and functions of said system, and modify the standard behavior thereof without permanently modifying the standard features and functions thereof.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로