$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Method and apparatus for characterizing a combustion flame

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) F23N-005/08   
미국특허분류(USC) 431/079 ; 431/075 ; 431/012 ; 431/076 ; 60/039.03 ; 340/578
출원번호 US-0985836 (1997-12-05)
발명자 / 주소
출원인 / 주소
대리인 / 주소
    Wolf, Greenfield & Sacks, P.C.
인용정보 피인용 횟수 : 53  인용 특허 : 11
초록

Characteristics of a flame within a turbine or burner are determined based upon ultraviolet, visible, and infrared measurements of the flame. The measurements include the amplitude of frequency bands that are indicative of an efficient combustion process, such as those that increase when the flame temperature increases. The measurements also include the amplitude of frequency bands that are indicative of an inefficient combustion process, such as those that do not vary, increase a relatively small amount, or decrease when the flame temperature increases....

대표
청구항

[ What is claimed is:] [1.] A system for characterizing a combustion flame in a combustion chamber, comprising:a first sensor having an input that receives energy within a first frequency band of the flame, and an output that provides a first signal indicative of an amplitude of the energy within the first frequency band;a second sensor having an input that receives energy within a second frequency band of the flame, different from the first frequency band, and an output that provides a second signal indicative of an amplitude of the energy within the se...

이 특허에 인용된 특허 (11)

  1. Brown Dale M. (Schenectady NY). Combustion control for producing low NOx emissions through use of flame spectroscopy. USP1996015487266.
  2. Brown Dale M. (Schenectady NY). Combustion control for producing low NOx emissions through use of flame spectroscopy. USP1996015480298.
  3. Brown Dale M. (Schenectady NY) Gorowitz Bernard (Clifton Park NY). Combustion control for producing low NOx emissions through use of flame spectroscopy. USP1994045303684.
  4. Plimpton Jonathan C. (Canterbury NH) Minott George L. (Wilton NH). Dual channel multi-spectrum infrared optical fire and explosion detection system. USP1997035612676.
  5. Engeler William E. (Scotia NY) Brown Dale M. (Schenectady NY). Emissions control for internal combustion engine. USP1995115467185.
  6. Minott George L. ; Plimpton Jonathan C.. Fiber optic linked flame sensor. USP1998105828797.
  7. Wendt Roger A. (Londonderry NH). Fire detection system with IR and UV ratio detector. USP1984064455487.
  8. Cormier Kenneth C.. Infrared emittance combustion analyzer. USP1998075785512.
  9. Dahlander Pr N. O. (Kamrersvgen 41 S-237 00 Bjrred SEX) Tyrn Carl H. (Majorsgatan 9 S-211 41 Malm SEX). Method for the control of a burner equipped with an injector nozzle and an arrangement for executing the method. USP1989054830601.
  10. Goff David R. (Christiansburg VA) Romanosky Robert R. (Prosperity PA) Hensel Peter (Morgantown WV). Real-time alkali monitoring system. USP1990014896965.
  11. Plimpton Jonathan C. (Northfield NH) Minott George L. (Wilton NH). UV/IR fire detector with dual wavelength sensing IR channel. USP1994055311167.

이 특허를 인용한 특허 피인용횟수: 53

  1. Nordberg, Timothy J.; Chian, Brent. Adaptive spark ignition and flame sensing signal generation system. USP2011118066508.
  2. Daw, Charles Stuart; Fuller, Timothy A.; Flynn, Thomas J.; Finney, Charles E. A.. Application of symbol sequence analysis and temporal irreversibility to monitoring and controlling boiler flames. USP2004086775645.
  3. Daw, Charles Stuart; Fuller, Timothy A.; Flynn, Thomas J.; Finney, Charles E. A.. Application of symbol sequence analysis and temporal irreversibility to monitoring and controlling boiler flames. USP2005056901351.
  4. Chandler, Christopher. Automated tuning of gas turbine combustion systems. USP2016029267443.
  5. Chandler, Christopher. Automated tuning of gas turbine combustion systems. USP2016059328670.
  6. Chandler, Christopher. Automated tuning of gas turbine combustion systems. USP20190410260428.
  7. Chandler, Christopher. Automated tuning of multiple fuel gas turbine combustion systems. USP2016059354618.
  8. Chian, Brent; Nordberg, Timothy J.. Circuit diagnostics from flame sensing AC component. USP2014118875557.
  9. Mark J. Khesin. Combustion diagnostics method and system. USP2002056389330.
  10. Leeland, Shanna L.; Chian, Brent. Combustion instability detection. USP2010067728736.
  11. Hamrin, Douglas; Lampe, Steve. Controls for multi-combustor turbine. USP2016039273606.
  12. Stuttaford, Peter John; Soni, Sumit; Gauthier, Donald; Rizkalla, Hany. Dynamic tuning of a gas turbine engine to detect and prevent lean blowout. USP2017109803560.
  13. Forbes Stewart,GBX ; Powell Brian,GBX. Flame monitoring methods and apparatus. USP2001066247918.
  14. McDonald, Jonathan; Chian, Brent. Flame sensing voltage dependent on application. USP2012118310801.
  15. Spalding, Michael Charles; Schneider, Donald Albert; Liu, Jiyuan; Glesius, Frederick Louis; Johanning, Jeffrey Louis; Lombardo, Leo Raymond; Chou, Fred Yu-Feng. Flame sensor. USP2018019863813.
  16. Prabhu, Edan. Fuel oxidation in a gas turbine system. USP2017039587564.
  17. Maslov, Boris A.. Gradual oxidation and autoignition temperature controls. USP2015129206980.
  18. Maslov, Boris A.. Gradual oxidation and autoignition temperature controls. USP2016039273608.
  19. Denison, Thomas Renau; Maslov, Boris A.. Gradual oxidation and multiple flow paths. USP2015038980193.
  20. Maslov, Boris A.. Gradual oxidation and multiple flow paths. USP2016059328660.
  21. Armstrong, Jeffrey. Gradual oxidation below flameout temperature. USP2016069371993.
  22. Maslov, Boris A.. Gradual oxidation below flameout temperature. USP2015038980192.
  23. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Gradual oxidation with adiabatic temperature above flameout temperature. USP2016079381484.
  24. Maslov, Boris A.. Gradual oxidation with adiabatic temperature above flameout temperature. USP2015018926917.
  25. Maslov, Boris A.; Armstrong, Jeffrey. Gradual oxidation with flue gas. USP2017089726374.
  26. Watts, Jim. Gradual oxidation with gradual oxidizer warmer. USP2015119194584.
  27. Hamrin, Douglas; Armstrong, Jeffrey. Gradual oxidation with heat control. USP2016069359948.
  28. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016059347664.
  29. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016059328916.
  30. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016069359947.
  31. Maslov, Boris A.; Hamrin, Douglas. Gradual oxidation with heat exchange media. USP2015049017618.
  32. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Gradual oxidation with heat transfer. USP2017029567903.
  33. Armstrong, Jeffrey; Maslov, Boris A.. Gradual oxidation with heat transfer. USP2016019234660.
  34. Hamrin, Douglas; Martin, Richard; Armstrong, Jeffrey. Gradual oxidation with heat transfer. USP2016059353946.
  35. Martin, Richard; Armstrong, Jeffrey; Hamrin, Douglas. Hybrid gradual oxidation. USP2017019534780.
  36. Chian, Brent. Leakage detection and compensation system. USP2014028659437.
  37. Chian, Brent; McDonald, Jonathan; Planer, Norm. Low cost high speed spark voltage and flame drive signal generator. USP2012108300381.
  38. Thomson,Murray J.; Nikkari,Jason J.; Mackay,Gervase I.; Chanda,Alak. Method and apparatus for improved process control in combustion applications. USP2007057217121.
  39. Chian, Brent; Hill, Bruce L.; Nordberg, Timothy J.; Strand, Rolf L.; Bird, Douglas; Anderson, Peter. Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system. USP20190210208954.
  40. Chian, Brent; Bird, Douglas; Anderson, Peter; Nordberg, Timothy J.; Johnson, Thomas; Strand, Rolf L.. Method and system for starting an intermittent flame-powered pilot combustion system. USP2016119494320.
  41. Robinson, Barnett Joel. Method for improving fuel efficiency in combustion chambers. USP2003086602067.
  42. Haffner Ken-Yves,CHX ; Hobel Matthias,CHX. Method of temperature measurement by correlation of chemiluminescent spectrum emitted by a flame with stored theoretical emission spectra for OH and/or CH radicals. USP2001116318891.
  43. Daw,Charles Stuart; Fuller,Timothy A.; Flynn,Thomas J.; Finney,Charles E. A.. Methods for monitoring and controlling boiler flames. USP2008047353140.
  44. Hamrin, Douglas; Lampe, Steve. Multi-combustor turbine. USP2016039279364.
  45. Engelhaupt, Darell Eugene. Optical flame detection system and method. USP2009067541938.
  46. Kraemer, Gilbert Otto; Berry, Jonathan Dwight; Davis, Jr., Lewis Berkley; Frederick, Garth Curtis; Krull, Anthony Wayne; Myers, Geoffrey David. Optical flame holding and flashback detection. USP2014068752362.
  47. Harchanko, John. Optically redundant fire detector for false alarm rejection. USP2013108547238.
  48. Chandler, Christopher. Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications. USP2017069671797.
  49. Prabhu, Edan. Oxidizing fuel in multiple operating modes. USP2018039926846.
  50. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Staged gradual oxidation. USP2016029267432.
  51. Heavner, III, Louis W.; Sharpe, Jr., Joseph H.; Eryurek, Evren; Kavaklioglu, Kadir. System and method for detecting an abnormal situation associated with a heater. USP2009057536274.
  52. Rabiei, Shahryar; Kraemer, Gilbert Otto; Myers, Geoffrey David. System and method for operating a gas turbine. USP2014028650883.
  53. Solosky, Rick; Evers, John. Universal opto-coupled voltage system. USP20180810042375.