$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Molecular wire crossbar memory 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G11C-011/00
출원번호 US-0280189 (1999-03-29)
발명자 / 주소
  • Kuekes Philip J.
  • Williams R. Stanley
  • Heath James R.
출원인 / 주소
  • Hewlett-Packard
인용정보 피인용 횟수 : 530  인용 특허 : 9

초록

A molecular wire crossbar memory (MWCM) system is provided. The MWCM comprises a two-dimensional array of a plurality of nanometer-scale devices, each device comprising a junction formed by a pair of crossed wires where one wire crosses another and at least one connector species connecting the pair

대표청구항

[ What is claimed is:] [1.] A two-dimensional memory array comprising a plurality of nanometer-scale devices, each device comprising a junction formed by a pair of crossed wires where one wire crosses another and at least one connector species comprising at least one bi-stable molecular switch and c

이 특허에 인용된 특허 (9)

  1. Culbertson W. Bruce ; Kuekes Philip J., Apparatus and method for configuring a reconfigurable electronic system having defective resources.
  2. Weinberger Arnold (Poughkeepsie NY), Logic array with multiple readout tables.
  3. Gallagher William Joseph (Ardsley NY) Kaufman James Harvey (San Jose CA) Parkin Stuart Stephen Papworth (San Jose CA) Scheuerlein Roy Edwin (Cupertino CA), Magnetic memory array using magnetic tunnel junction devices in the memory cells.
  4. Rust Thomas F. (43 Asilomar Cir. Oakland CA 94611) Culver Joanne P. (43 Asilomar Cir. Oakland CA 94611), Molecular memory medium and molecular memory disk drive for storing information using a tunnelling probe.
  5. Snider Gregory S. ; Kuekes Philip J., Network connection scheme.
  6. Blahut Donald E. (Holmdel NJ) Cooper ; Jr. James A. (Warren NJ), Programable logic array.
  7. Peterson William M., Quantum random address memory.
  8. Reed Mark A. (New Haven CT), Sub-nanoscale electronic systems and devices.
  9. Snider Gregory S. (Mountain View CA), Tileable gate array cell for programmable logic devices and gate array having tiled gate array cells.

이 특허를 인용한 특허 (530)

  1. Bertin, Claude L.; Cleveland, Lee, 1-R resistive change element arrays using resistive reference elements.
  2. Nugent, Alex, Adaptive neural network utilizing nanotechnology-based components.
  3. Bulovic, Vladimir; Mandell, Aaron; Perlman, Andrew, Addressable and electrically reversible memory switch.
  4. Vadi,Vasisht Mantra, Adjustable global tap voltage to improve memory cell yield.
  5. Kumar, Tanmay, Amorphous silicon RRAM with non-linear device and operation.
  6. Oksanen, Markku Anttoni; Seppälä, Eira; Ermolov, Vladmir; Pasanen, Pirjo, Apparatus and associated methods in relation to carbon nanotube networks.
  7. Scheuerlein, Roy E.; Knall, N. Johan, Apparatus and method for disturb-free programming of passive element memory cells.
  8. Scheuerlein, Roy E.; Knall, N. Johan, Apparatus and method for disturb-free programming of passive element memory cells.
  9. DeHon,Andre M., Apparatus and method of interconnecting nanoscale programmable logic array clusters.
  10. Nugent,Alex, Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks.
  11. Trimberger,Steven M.; Bapat,Shekhar; Wells,Robert W.; Patrie,Robert D.; Lai,Andrew W., Application-specific methods for testing molectronic or nanoscale devices.
  12. Bapat,Shekhar; Wells,Robert W.; Patrie,Robert D.; Lai,Andrew W., Application-specific methods useful for testing look up tables in programmable logic devices.
  13. Snider,Gregory Stuart, Architecture and methods for computing with reconfigurable resistor crossbars.
  14. Ghozeil,Adam L; Stasiak,James; Peters,Kevin; Kawamoto,Galen H., Array of nanoscopic mosfet transistors and fabrication methods.
  15. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large cross-point memory arrays with resistive memory elements.
  16. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large cross-point memory arrays with resistive memory elements.
  17. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large memory arrays with resistive memory elements.
  18. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large memory arrays with resistive memory elements.
  19. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large memory arrays with resistive memory elements.
  20. DeHon,Andr챕; Lieber,Charles M., Array-based architecture for molecular electronics.
  21. DeHon,Andr��; Lieber,Charles M., Array-based architecture for molecular electronics.
  22. O'Keeffe,James; Cho,Kyeongjae, Band-structure modulation of nano-structures in an electric field.
  23. Patricia A. Beck, Batch fabricated molecular electronic devices with cost-effective lithographic electrodes.
  24. Tian, Bozhi; Xie, Ping; Kempa, Thomas J.; Lieber, Charles M.; Cohen-Karni, Itzhaq; Qing, Quan; Duan, Xiaojie, Bent nanowires and related probing of species.
  25. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Bistable latch circuit implemented with nanotube-based switching elements.
  26. Lian, Ke K.; Szczech, John B.; Zhang, Jie, Bistable microelectronic switch stack.
  27. Zhang, Xiao-An; Williams, R. Stanley; Vincent, Kent D., Bistable molecular mechanical devices activated by an electric field for electronic ink and other visual display applications.
  28. Zhang, Xiao-An; Williams, R. Stanley; Vincent, Kent D., Bistable molecular mechanical devices with a band gap change activated by an electrical field for electronic switching, gating, and memory applications.
  29. Zhang, Xiao-An; Williams, R Stanley; Walmsley, Robert G; Vincent, Kent, Bistable molecular mechanical devices with a middle rotating segment activated by an electric field for electronic switching, gating, and memory applications.
  30. Zhang, Xiao-An; Williams, R Stanley; Walmsley, Robert G; Vincent, Kent, Bistable molecular mechanical devices with a middle rotating segment activated by an electric field for electronic switching, gating, and memory applications.
  31. Bratkovski, Alexandre M.; Kornilovich, Pavel; Williams, R. Stanley; Zhang, Xiao-An, Bistable molecular mechanical devices with an appended rotor activated by an electric field for electronic switching, gating and memory applications.
  32. Zhou,Zhang Lin; Zhang,Sean Xiao An, Bistable molecular switches and associated methods.
  33. Zhou,Zhang Lin; Chen,Yong; Zhang,Xiao An, Bottom electrode chemically-bonded Langmuir-Blodgett films via photolabile groups.
  34. Lieber, Charles M.; Tian, Bozhi; Jiang, Xiaocheng, Branched nanoscale wires.
  35. Kuo, Harry; Nazarian, Hagop; Nguyen, San Thanh, Capacitive discharge programming for two-terminal memory cells.
  36. Liu, Bao, Carbon nanotube crossbar based nano-architecture.
  37. Chen, Jia; Voldman, Steven Howard, Carbon nanotube diodes and electrostatic discharge circuits and methods.
  38. Burke, Peter A.; Sun, Sey-Shing; Lu, Hong-Qiang, Carbon nanotube memory cell for integrated circuit structure with removable side spacers to permit access to memory cell and process for forming such memory cell.
  39. McCreery,Richard L., Chemical monolayer field emitter device.
  40. Heath, James R.; Williams, R. Stanley; Kuekes, Philip J., Chemically synthesized and assembled electronic devices.
  41. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M.; Guo, Frank, Circuit arrays having cells with combinations of transistors and nanotube switching elements.
  42. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Guo,Frank, Circuit arrays having cells with combinations of transistors and nanotube switching elements.
  43. Harvard, Qawi, Circuits for determining the resistive states of resistive change elements.
  44. Manning, H. Montgomery; Rueckes, Thomas; Bertin, Claude L., Compact electrical switching devices with nanotube elements, and methods of making same.
  45. Jo, Sung Hyun, Conductive path in switching material in a resistive random access memory device and control.
  46. Jo, Sung Hyun, Conductive path in switching material in a resistive random access memory device and control.
  47. Snider, Gregory S.; Kuekes, Philip J.; Williams, R. Stanley, Configurable molecular switch array.
  48. Kuekes,Philip J.; Roblnett,J. Warren; Roth,Ron M.; Seroussl,Gadlel; Smider,Gregory S.; Williams,R. Stanley, Constant-weight-code-based addressing of nanoscale and mixed microscale/nanoscale arrays.
  49. Stewart, Duncan; Ohlberg, Douglas; Williams, R. Stanley; Kuekes, Philip J., Control layer for a nanoscale electronic switching device.
  50. Kuekes, Philip J., Controlled input molecular crossbar latch.
  51. Rinerson, Darrell; Longcor, Steven W.; Chevallier, Christophe J.; Ward, Edmond R.; Kinney, Wayne; Hsia, Steve Kuo-Ren, Cross point memory array using distinct voltages.
  52. Rinerson, Darrell; Chevallier, Christophe J.; Longcor, Steven W.; Ward, Edmond R.; Kinney, Wayne; Hsia, Steve Kuo-Ren, Cross point memory array using multiple modes of operation.
  53. Rinerson, Darrell; Longcor, Steven W.; Ward, Edmond R.; Hsia, Steve Kuo-Ren; Kinney, Wayne; Chevallier, Christophe J., Cross point memory array using multiple thin films.
  54. Chung, Hyun-jong; Seo, Sun-ae; Lee, Chang-won; Jeon, Dae-young; Jung, Ran-ju; Kim, Dong-chul; Bae, Ji-young, Cross-point latch and method of operating the same.
  55. Mouttet, Blaise Laurent, Crossbar arithmetic and summation processor.
  56. Misra,Veena; Damiano, Jr.,John, Crossbar array microelectronic electrochemical cells.
  57. Mouttet, Blaise Laurent, Crossbar comparator.
  58. Mouttet, Blaise Laurent, Crossbar control circuit.
  59. Mouttet, Blaise Laurent, Crossbar waveform driver circuit.
  60. Robinett, Warren; Kuekes, Philip J., Crossbar-memory systems and methods for writing to and reading from crossbar memory junctions of crossbar-memory systems.
  61. Beck, Patricia A.; Ohlberg, Douglas; Stewart, Duncan; Li, Zhiyong, Custom electrodes for molecular memory and logic devices.
  62. Hönigschmid, Heinz; Müller, Gerhard, Data memory with a plurality of memory banks.
  63. Scheuerlein,Roy E.; Petti,Christopher J.; Fasoli,Luca G., Decoding circuit for non-binary groups of memory line drivers.
  64. Kuekes Philip J. ; Williams R. Stanley, Demultiplexer for a molecular wire crossbar network (MWCN DEMUX).
  65. Dehon,Andr?; Naeimi,Helia, Deterministic addressing of nanoscale devices assembled at sublithographic pitches.
  66. Rinerson, Darrell; Cheung, Robin, Device fabrication.
  67. Rinerson, Darrell; Cheung, Robin, Device fabrication.
  68. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Device selection circuitry constructed with nanotube ribbon technology.
  69. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Device selection circuitry constructed with nanotube technology.
  70. Jo, Sung Hyun; Lu, Wei, Device switching using layered device structure.
  71. Jo, Sung Hyun; Lu, Wei, Device switching using layered device structure.
  72. Jo, Sung Hyun; Lu, Wei, Device switching using layered device structure.
  73. Jaiprakash, Venkatachalam C.; Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  74. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  75. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  76. Jaiprakash, Venkatachalam C.; Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  77. Jaiprakash, Venkatachalam C.; Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  78. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  79. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  80. Herner, Scott Brad; Nazarian, Hagop, Disturb-resistant non-volatile memory device and method.
  81. Herner, Scott Brad, Disturb-resistant non-volatile memory device using via-fill and etchback technique.
  82. Herner, Scott Brad, Disturb-resistant non-volatile memory device using via-fill and etchback technique.
  83. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices.
  84. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  85. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  86. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  87. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  88. Kim, Young W.; Rosendale, Glen, Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array.
  89. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., EEPROMS using carbon nanotubes for cell storage.
  90. Zhang, Xiao-An; Williams, R. Stanley; Vincent, Kent D., Electric-field actuated chromogenic materials based on molecules with a rotating middle segment for applications in photonic switching.
  91. Thorp,H. Holden; Murray,Royce W.; Leone,Anthony M.; Williams,Mary Elizabeth, Electrical devices employing molten compositions of biomolecules.
  92. Hsu, Sheng Teng; Zhuang, Wei-Wei, Electrically programmable resistance cross point memory.
  93. Hsu, Sheng Teng, Electrically programmable resistance cross point memory sensing method.
  94. Maxwell, Steven Patrick, Electrode structure for a non-volatile memory device and method.
  95. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  96. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  97. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  98. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory having cell selection circuitry constructed with nanotube technology.
  99. Rueckes, Thomas; Segal, Brent M.; Bertin, Claude L., Electromechanical three-trace junction devices.
  100. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Electromechanical three-trace junction devices.
  101. Rueckes,Thomas; Segal,Brent M.; Bertin,Claude, Electromechanical three-trace junction devices.
  102. Hofmann, Franz; Kreupl, Franz; Luyken, Richard Johannes; Schloesser, Till, Electronic device and method for fabricating an electronic device.
  103. Meade, Roy E.; Sandhu, Gurtej S., Electronic devices formed of two or more substrates connected together, electronic systems comprising electronic devices, and methods of forming electronic devices.
  104. Meade, Roy E.; Sandhu, Gurtej S., Electronic devices including two or more substrates electrically connected together and methods of forming such electronic devices.
  105. Meade, Roy E.; Sandhu, Gurtej S., Electronic devices including two or more substrates electrically connected together and methods of forming such electronic devices.
  106. McCreery,Richard L., Electronic junction devices featuring redox electrodes.
  107. Matsui, Eriko; Watanabe, Haruo; Matsuzawa, Nobuyuki; Yasuda, Akio; Mizutani, Tadashi; Yamauchi, Takae; Kitagawa, Susumu, Element for modulating area.
  108. Snider, Gregory S.; Kuekes, Philip J., FPGA architecture at conventional and submicron scales.
  109. Snider,Gregory S.; Kuekes,Philip J., FPGA architecture at conventional and submicron scales.
  110. Chen, Yong, Fabricating a molecular electronic device having a protective barrier layer.
  111. Chen, Yong, Fabricating a molecular electronic device having a protective barrier layer.
  112. Chen, Yong, Fabrication of molecular electronic circuit by imprinting.
  113. Yong Chen, Fabrication of molecular electronic circuit by imprinting.
  114. Son,Kyung Ah; Prokopuk,Nicholas, Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks.
  115. Ishikawa, Kenji; Shido, Hideharu; Nagata, Takeo; Kurahashi, Teruo; Mishima, Yasuyoshi, Fabrication process of a semiconductor device to form ultrafine patterns smaller than resolution limit of exposure apparatus.
  116. Snider,Gregory S., Factored nanoscale multiplexer/demultiplexer circuit for interfacing nanowires with microscale and sub-microscale electronic devices.
  117. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Rueckes, Thomas; Guo, Frank, Field effect device having a channel of nanofabric and methods of making same.
  118. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Field effect devices controlled via a nanotube switching element.
  119. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Field effect devices having a drain controlled via a nanotube switching element.
  120. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Field effect devices having a gate controlled via a nanotube switching element.
  121. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Field effect devices having a gate controlled via a nanotube switching element.
  122. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Guo,Frank, Field effect devices having a source controlled via a nanotube switching element.
  123. Asnaashari, Mehdi; Nazarian, Hagop; Nguyen, Sang, Field programmable gate array utilizing two-terminal non-volatile memory.
  124. Nazarian, Hagop; Nguyen, Sang Thanh; Kumar, Tanmay, Field programmable gate array utilizing two-terminal non-volatile memory.
  125. Nazarian, Hagop; Nguyen, Sang Thanh; Kumar, Tanmay, Field programmable gate array utilizing two-terminal non-volatile memory.
  126. Nazarian, Hagop; Nguyen, Sang Thanh; Kumar, Tanmay, Field programmable gate array utilizing two-terminal non-volatile memory.
  127. Nazarian, Hagop; Jo, Sung Hyun, Filamentary based non-volatile resistive memory device and method.
  128. Nazarian, Hagop; Jo, Sung Hyun, Filamentary based non-volatile resistive memory device and method.
  129. Kagan, Cherie R.; Lin, Chun, Film having alternating monolayers of a metal-metal bonded complex monolayer and an organic monolayer by layer-by-layer growth.
  130. Mandell, Aaron; Perlman, Andrew, Floating gate memory device using composite molecular material.
  131. Bocian,David F.; Kuhr,Werner G.; Lindsey,Jonathan S.; Dabke,Rajeeve Balkrishna; Liu,Zhiming, Formation of self-assembled monolayers of redox SAMs on silicon for molecular memory applications.
  132. Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernard; Brock,Darren K.; Jaiprakash,Venkatachalam C.; Bertin,Claude L., Four terminal non-volatile transistor device.
  133. Nugent, Alex, Fractal memory and computational methods and systems based on nanotechnology.
  134. Nugent,Alex, Fractal memory and computational methods and systems based on nanotechnology.
  135. Matsui, Eriko; Matsuzawa, Nobuyuki; Yasuda, Akio; Harnack, Oliver, Functional molecular device.
  136. Matsui, Eriko; Matsuzawa, Nobuyuki; Yasuda, Akio; Harnack, Oliver, Functional molecular element and functional molecular device.
  137. Matsui,Eriko; Harnack,Oliver; Matsuzawa,Nobuyuki; Yasuda,Akio, Functional molecular element and functional molecular device.
  138. Masui, Eriko, Functional molecular element, manufacturing method thereof, and functional molecular device.
  139. Matsui, Eriko, Functional molecular element, method for producing functional molecular element, and functional molecular device.
  140. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  141. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  142. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  143. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  144. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  145. Jo, Sung Hyun, Guided path for forming a conductive filament in RRAM.
  146. Jo, Sung Hyun, Guided path for forming a conductive filament in RRAM.
  147. Jo, Sung Hyun, Hereto resistive switching material layer in RRAM device and method.
  148. Jo, Sung Hyun, Hetero resistive switching material layer in RRAM device and method.
  149. Jo, Sung Hyun, Hetero-switching layer in a RRAM device and method.
  150. Jo, Sung Hyun, Hetero-switching layer in a RRAM device and method.
  151. Nugent, Alex, Hierarchical temporal memory methods and systems.
  152. Bocian, David F; Kuhr, Werner G; Lindsey, Jonathan; Clausen, Peter Christian; Gryko, Daniel Tomasz, High density memory device.
  153. Bocian,David F.; Kuhr,Werner G.; Lindsey,Jonathan, High density molecular memory device.
  154. Bocian, David F.; Kuhr, Werner G.; Lindsey, Jonathan, High density non-volatile memory device.
  155. Bocian,David F.; Kuhr,Werner G.; Lindsey,Jonathan; Clausen,Peter Christian; Gryko,Daniel Tomasz, High density non-volatile memory device.
  156. Nugent, Alex, High density synapse chip using nanoparticles.
  157. Nguyen, Sang; Nazarian, Hagop, High operating speed resistive random access memory.
  158. Rinerson, Darrell; Longcor, Steven W.; Ward, Edmond R.; Hsia, Steve Kuo-Ren; Kinney, Wayne, High-density NVRAM.
  159. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  160. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  161. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Rueckes, Thomas; Guo, Frank, Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same.
  162. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  163. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  164. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Hybrid circuit having nanotube electromechanical memory.
  165. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube memory cells.
  166. Misra, Veena; Gowda, Srivardhan; Mathur, Guru, Hybrid molecular memory devices and methods of use thereof.
  167. Fasoli, Luca G.; Scheuerlein, Roy E., Integrated circuit memory array configuration including decoding compatibility with partial implementation of multiple memory layers.
  168. Fasoli,Luca G.; Scheuerlein,Roy E., Integrated circuit memory array configuration including decoding compatibility with partial implementation of multiple memory layers.
  169. Bertin,Claude L., Integrated nanotube and field effect switching device.
  170. Bertin, Claude L., Integrated nanotube and field effect switching devices.
  171. Bertin, Claude L., Integrated three-dimensional semiconductor system comprising nonvolatile nanotube field effect transistors.
  172. Mouttet, Blaise Laurent, Interconnections for crosswire arrays.
  173. Jo, Sung Hyun; Nazarian, Hagop; Lu, Wei, Interface control for improved switching in RRAM.
  174. Jo, Sung Hyun; Nazarian, Hagop; Lu, Wei, Interface control for improved switching in RRAM.
  175. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Isolation structure for deflectable nanotube elements.
  176. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Isolation structure for deflectable nanotube elements.
  177. Bertin, Claude L.; Rueckes, Thomas; Ward, Jonathan W.; Guo, Frank; Konsek, Steven L.; Meinhold, Mitchell, Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements.
  178. Ward, Jonathan W.; Meinhold, Mitchell; Bertin, Claude L.; Schlatka, Benjamin; Segal, Brent M.; Ruckes, Thomas, Light emitters using nanotubes and methods of making same.
  179. Maxwell, Steven Patrick, Line and space architecture for a non-volatile memory device.
  180. Siau, Chang Hua; Chevallier, Christophe; Rinerson, Darrell; Lim, Seow Fong; Namala, Sri, Local bit lines and methods of selecting the same to access memory elements in cross-point arrays.
  181. Siau, Chang Hua; Chevallier, Christophe; Rinerson, Darrell; Lim, Seow Fong; Namala, Sri Rama, Local bit lines and methods of selecting the same to access memory elements in cross-point arrays.
  182. Siau, Chang Hua; Chevallier, Christophe; Rinerson, Darrell; Lim, Seow Fong; Namala, Sri Rama, Local bit lines and methods of selecting the same to access memory elements in cross-point arrays.
  183. Bertin, Claude L., Logic elements comprising carbon nanotube field effect transistor (CNTFET) devices and methods of making same.
  184. Bertin, Claude L., Logic elements comprising carbon nanotube field effect transistor (CNTFET) devices and methods of making same.
  185. Hsu, Sheng Teng; Zhuang, Wei-Wei, Low cross-talk electrically programmable resistance cross point memory.
  186. Sun, Xin; Jo, Sung Hyun; Kumar, Tanmay, Low temperature P+ polycrystalline silicon material for non-volatile memory device.
  187. Sun, Xin; Jo, Sung Hyun; Kumar, Tanmay, Low temperature P+ polycrystalline silicon material for non-volatile memory device.
  188. Herner, Scott Brad, Low temperature fabrication method for a three-dimensional memory device and structure.
  189. Clark, Mark Harold, Low temperature p+ silicon junction material for a non-volatile memory device.
  190. Snider, Greg, MOLECULAR-JUNCTION-NANOWIRE-CROSSBAR-BASED INVERTER, LATCH, AND FLIP-FLOP CIRCUITS, AND MORE COMPLEX CIRCUITS COMPOSED, IN PART, FROM MOLECULAR-JUNCTION-NANOWIRE-CROSSBAR-BASED INVERTER, LATCH, AND F.
  191. Black, Jr., William C.; Zhang, Ruili (Linda), Magnetic memory sensing method and apparatus.
  192. Scheuerlein,Roy E.; Knall,N. Johan, Manufacturing method for integrated circuit having disturb-free programming of passive element memory cells.
  193. Chevallier, Christophe; Namala, Sri Rama; Siau, Chang Hua; Eggleston, David, Memory architectures and techniques to enhance throughput for cross-point arrays.
  194. Nazarian, Hagop; Jo, Sung Hyun; Lu, Wei, Memory array architecture with two-terminal memory cells.
  195. Siau, Chang Hua; Bateman, Bruce, Memory array with local bitlines and local-to-global bitline pass gates and gain stages.
  196. Bertin, Claude L.; Guo, Frank; Rueckes, Thomas; Konsek, Steven L.; Meinhold, Mitchell; Strasburg, Max; Sivarajan, Ramesh; Huang, X. M. Henry, Memory arrays using nanotube articles with reprogrammable resistance.
  197. Bertin,Claude L.; Guo,Frank; Rueckes,Thomas; Konsek,Steven L.; Meinhold,Mitchell; Strasburg,Max; Sivarajan,Ramesh; Huang,X. M. Henry, Memory arrays using nanotube articles with reprogrammable resistance.
  198. Krieger, Juri H.; Yudanov, Nikolai, Memory device.
  199. Krieger, Juri H.; Yudanov, Nikolai, Memory device.
  200. Krieger, Juri H.; Yudanov, Nikolai, Memory device.
  201. Krieger, Juri H.; Yudanoy, Nikolai, Memory device.
  202. Bozano,Luisa Dominica; Carter,Kenneth Raymond; Scott,John Campbell, Memory device and method of making the same.
  203. Krieger, Juri H.; Yudanov, N. F., Memory device with a self-assembled polymer film and method of making the same.
  204. Krieger, Juri H.; Yudanov, Nikolai, Memory device with active and passive layers.
  205. Krieger, Juri H.; Yudanov, Nikolai, Memory device with active passive layers.
  206. Bertin, Claude L.; Huang, X. M. Henry; Rueckes, Thomas; Sivarajan, Ramesh, Memory elements and cross point switches and arrays for same using nonvolatile nanotube blocks.
  207. Bertin, Claude L.; Huang, X. M. Henry; Rueckes, Thomas; Sivarajan, Ramesh, Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks.
  208. Bertin, Claude L.; Huang, X. M. Henry; Rueckes, Thomas; Sivarajan, Ramesh, Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks.
  209. Nugent, Alex, Memristive neural processor utilizing anti-hebbian and hebbian technology.
  210. Fasoli,Luca G.; Scheuerlein,Roy E., Method and apparatus for incorporating block redundancy in a memory array.
  211. Mascolo, Danilo; Cerofolini, Gianfranco, Method and device for demultiplexing a crossbar non-volatile memory.
  212. Mascolo,Danilo; Cerofolini,Gianfranco, Method and device for demultiplexing a crossbar non-volatile memory.
  213. Lu, Wei, Method and structure of monolithically integrated IC and resistive memory using IC foundry-compatible processes.
  214. Nugent, Alex, Method and system for a hierarchical temporal memory utilizing a router hierarchy and hebbian and anti-hebbian learning.
  215. Misra, Veena; Bocian, David F.; Kuhr, Werner G.; Lindsey, Jonathan S., Method and system for molecular charge storage field effect transistor.
  216. Zhang,Sean X.; Zhou,Zhang lin; Chen,Yong, Method for chemically bonding Langmuir-Blodgett films to substrates.
  217. McCreery, Richard L., Method for conductance switching in molecular electronic junctions.
  218. Herner, Scott Brad, Method for forming stackable non-volatile resistive switching memory devices.
  219. Heath, James R.; Collier, Charles P.; Luo, Yi; DeIonno, Erica; Beck, Patricia A., Method for lithographic processing on molecular monolayer and multilayer thin films.
  220. Heath, James R.; Collier, Charles P.; Luo, Yi; DeIonno, Erica; Beck, Patricia A., Method for lithographic processing on molecular monolayer and multilayer thin films.
  221. Chen, Yong; Williams, R. Stanley, Method for making nanoscale wires and gaps for switches and transistors.
  222. Chen,Yong; Williams,R. Stanley, Method for making nanoscale wires and gaps for switches and transistors.
  223. Wessels,Jurina; Ford,William E.; Yasuda,Akio, Method for preparing a nanowire crossbar structure and use of a structure prepared by this method.
  224. Mascolo, Danilo; Cerofolini, Gianfranco, Method for realizing a multispacer structure, use of said structure as a mold and circuital architectures obtained from said mold.
  225. Mascolo, Danilo; Cerofolini, Gianfranco, Method for realizing a nanometric circuit architecture between standard electronic components and semiconductor device obtained with said method.
  226. Cerofolini, Gianfranco; Mascolo, Danilo, Method for realizing an electric linkage in a semiconductor electronic device between a nanometric circuit architecture and standard electronic components.
  227. Maxwell, Steven Patrick; Jo, Sung-Hyun, Method for silver deposition for a non-volatile memory device.
  228. Maxwell, Steven Patrick; Jo, Sung-Hyun; Herner, Scott Brad, Method for silver deposition for a non-volatile memory device.
  229. Yates, Colin D.; Neville, Christopher L., Method of aligning deposited nanotubes onto an etched feature using a spacer.
  230. Alfred Kersch DE; Siegfried Schwarzl DE; Stefan Miethaner DE; Hermann Wendt DE, Method of fabricating a micro-technical structure, and micro-technical component.
  231. Ward, Jonathan W.; Schlatka, Benjamin; Meinhold, Mitchell; Smith, Robert F.; Segal, Brent M., Method of forming a carbon nanotube-based contact to semiconductor.
  232. Busta, Heinz H.; Steckenrider, J. Scott, Method of forming a current controlling device.
  233. Zhang, Sean X.; Leung, Sui-Hing, Method of forming a self-assembled molecular layer.
  234. Snowdon, James Kenneth; Batzill, Marcus Matthias; Bardou, Fran.cedilla.ois, Method of forming regular array of microscopic structures on a substrate.
  235. Kamins, Theodore I., Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices.
  236. Kamins,Theodore I., Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices.
  237. Tong, William M.; Stewart, Duncan; Williams, R. Stanley; Sharma, Manish; Li, Zhiyong; Gibson, Gary A., Method of interconnect formation using focused beams.
  238. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Method of making non-volatile field effect devices and arrays of same.
  239. Ajayan,Pulickel M.; Ganapathiraman,Ramanath; de la Guardia,Andres, Method of transforming carbon nanotubes.
  240. Dehon, Andre; Lieber, Charles M.; Savage, John E.; Rachlin, Eric, Method providing radial addressing of nanowires.
  241. Nugent, Alex, Methodology for the configuration and repair of unreliable switching elements.
  242. Picciotto,Carl E.; Hartwell,Peter George, Methods and systems for aligning and coupling devices.
  243. Freer, Erik; Hamilton, James M.; Stumbo, David P.; Komiya, Kenji; Shibata, Akihide, Methods and systems for electric field deposition of nanowires and other devices.
  244. Harvard, Qawi, Methods for determining the resistive states of resistive change elements.
  245. Gee, Harry Yue; Maxwell, Steven Patrick; Vasquez, Jr., Natividad; Clark, Mark Harold, Methods for fabricating resistive memory device switching material using ion implantation.
  246. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  247. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  248. Romano,Linda T.; Hamilton,James M., Methods for nanowire growth.
  249. Robbins, Virginia, Methods for oriented growth of nanowires on patterned substrates.
  250. Bertin, Claude L.; Cleveland, Lee, Methods for programming 1-R resistive change element arrays.
  251. Bertin, Claude L.; Cleveland, Lee, Methods for reading and programming 1-R resistive change element arrays.
  252. Goldstein,Seth Copen; Rosewater,Daniel L., Methods of chemically assembled electronic nanotechnology circuit fabrication.
  253. Misra, Veena; Damiano, Jr., John, Methods of fabricating crossbar array microelectronic electrochemical cells.
  254. Ghozeil, Adam L; Stasiak, James; Peters, Kevin; Kawamoto, Galen H., Methods of fomring array of nanoscopic MOSFET transistors.
  255. Lieber,Charles M.; Rueckes,Thomas; Joselevich,Ernesto; Kim,Kevin, Methods of forming nanoscopic wire-based devices and arrays.
  256. Lieber,Charles M.; Rueckes,Thomas; Joselevich,Ernesto; Kim,Kevin, Methods of forming nanoscopic wire-based devices and arrays.
  257. Rueckes, Thomas; Segal, Brent M., Methods of forming nanotube films and articles.
  258. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  259. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  260. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  261. Rueckes,Thomas; Segal,Brent M.; Brock,Darren K., Methods of making electromechanical three-trace junction devices.
  262. Bertin, Claude L.; Segal, Brent M.; Rueckes, Thomas; Ward, Jonathan W., Methods of making nanotube switches.
  263. Empedocles, Stephen; Bock, Larry; Chow, Calvin; Duan, Xianfeng; Niu, Chungming; Pontis, George; Sahi, Vijendra; Romano, Linda T.; Stumbo, David, Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices.
  264. Empedocles,Stephen; Bock,Larry; Chow,Calvin Y. H.; Duan,Xianfeng; Niu,Chunming; Pontis,George; Sahi,Vijendra; Romano,Linda T.; Stumbo,David, Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices.
  265. Rueckes, Thomas; Segal, Brent M., Methods of nanotube films and articles.
  266. Rueckes,Thomas; Segal,Brent M., Methods of nanotube films and articles.
  267. Rueckes,Thomas; Segal,Brent M., Methods of nanotubes films and articles.
  268. Duan, Xiangfeng; Daniels, Hugh; Niu, Chunming; Sahi, Vijendra; Hamilton, James; Romano, Linda T., Methods of positioning and/or orienting nanostructures.
  269. Duan, Xiangfeng; Daniels, R. Hugh; Niu, Chunming; Sahi, Vijendra; Hamilton, James M.; Romano, Linda T., Methods of positioning and/or orienting nanostructures.
  270. Duan,Xiangfeng; Daniels,R. Hugh; Niu,Chunming; Sahi,Vijendra; Hamilton,James M.; Romano,Linda T., Methods of positioning and/or orienting nanostructures.
  271. Duan,Xiangfeng; Daniels,R. Hugh; Niu,Chunming; Sahi,Vijendra; Hamilton,James M.; Romano,Linda T., Methods of positioning and/or orienting nanostructures.
  272. Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  273. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  274. Wells,Robert W.; Patrie,Robert D.; DeBaets,Andrew J., Methods of utilizing programmable logic devices having localized defects in application-specific products.
  275. McCreery,Richard L., Micro-electronic junctions devices containing same.
  276. Lu, Wei, Modeling technique for resistive random access memory (RRAM) cells.
  277. Kuekes, Phillip J., Molecular crossbar latch.
  278. Zhang, Xiao-An; Bratkovski, Alexandre; Chen, Yong; Williams, R. Stanley; Vincent, Kent D., Molecular devices activated by an electric field for electronic ink and other visual display.
  279. Kagan, Cherie R; Lin, Chun, Molecular electronic device using metal-metal bonded complexes.
  280. Hartwich,Jessica; Kretz,Johannes; Luyken,Richard Johannes; R?sner,Wolfgang, Molecular electronics arrangement and method for producing a molecular electronics arrangement.
  281. Zhang, Sean X.; Chen, Yong, Molecular layer and method of forming the same.
  282. Zhang,Sean X.; Chen,Yong, Molecular layer and method of forming the same.
  283. Zhang, Sean Xiao-An; Williams, R. Stanley; Vincent, Kent D., Molecular mechanical devices with a band gap change activated by an electric field for optical switching applications.
  284. Krieger, Juri H.; Yudanov, Nikolay F., Molecular memory cell.
  285. Krieger,Juri H; Yudanov,Nicolay F, Molecular memory cell.
  286. Bulovic, Vladimir; Mandell, Aaron; Perlman, Andrew, Molecular memory device.
  287. Chen, Yong; Walmsley, Robert G., Molecular memory systems and methods.
  288. Goldstein, Seth Copen; Rosewater, Daniel L., Molecular scale latch and associated clocking scheme to provide gain, memory and I/O isolation.
  289. Snider, Gregory S., Molecular wire content addressable memory.
  290. Eaton, Jr., James R.; Kuekes, Philip John, Molecular wire crossbar flash memory.
  291. Snider,Greg, Molecular-junction-nanowire-crossbar-based neural network.
  292. Kuekes Philip J. ; Williams R. Stanley ; Heath James R., Molecular-wire crossbar interconnect (MWCI) for signal routing and communications.
  293. Snider, Greg, Molecular-wire-based restorative multiplexer, and method for constructing a multiplexer based on a configurable, molecular-junction-nanowire crossbar.
  294. Kuhr,Werner G.; Bocian,David F.; Liu,Zhiming; Yasseri,Amir, Molehole embedded 3-D crossbar architecture used in electrochemical molecular memory device.
  295. Narayanan, Sundar; Maxwell, Steve; Vasquez, Jr., Natividad; Gee, Harry Yue, Monolithically integrated resistive memory using integrated-circuit foundry compatible processes.
  296. Narayanan, Sundar; Maxwell, Steve; Vasquez, Jr., Natividad; Gee, Harry Yue, Monolithically integrated resistive memory using integrated-circuit foundry compatible processes.
  297. Wu, Jian; Meyer, Rene, Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells.
  298. Wu, Jian; Meyer, Rene, Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells.
  299. Wu, Jian; Meyer, Rene, Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells.
  300. Rinerson, Darrell; Chevallier, Christophe J.; Longcor, Steven W.; Hsia, Steve Kuo-Ren, Multi-output multiplexor.
  301. Kan,Edwin C.; Liu,Zengtao; Lee,Chungho, Multibit metal nanocrystal memories and fabrication.
  302. Siau, Chang Hua, Multilayer cross-point memory array having reduced disturb susceptibility.
  303. Nugent, Alex, Multilayer training in a physical neural network formed utilizing nanotechnology.
  304. Rinerson, Darrell; Chevallier, Christophe J.; Longcor, Steven W.; Ward, Edmond R.; Kinney, Wayne; Hsia, Steve Kuo-Ren, Multiple modes of operation in a cross point array.
  305. Kuekes,Philip J.; Williams,R. Stanley, Multiplexer interface to a nanoscale-crossbar.
  306. Rinerson, Darrell; Chevallier, Christophe J., Multiplexor having a reference voltage on unselected lines.
  307. Lindsey, Jonathan S.; Bocian, David F.; Schweikart, Karl-Heinz; Kuhr, Werner G., Multistate triple-decker dyads in three distinct architectures for information storage applications.
  308. Tran,Bao, NANO-electronic memory array.
  309. Manning, H. Montgomery; Rueckes, Thomas; Bertin, Claude L.; Ward, Jonathan W.; Derderian, Garo, NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same.
  310. Rueckes, Thomas; Segal, Brent M.; Vogeli, Bernhard; Brock, Darren K.; Jaiprakash, Venkatachalam C.; Bertin, Claude L., NRAM bit selectable two-device nanotube array.
  311. Tran, Bao Q., Nano memory, light, energy, antenna and strand-based systems and methods.
  312. Tran, Bao, Nano-electronic array.
  313. Lieber,Charles M.; Duan,Xiangfeng; Huang,Yu; Agarwal,Ritesh, Nanoscale coherent optical components.
  314. Davis,Bryan; Principe,Jose C.; Fortes,Jose, Nanoscale content-addressable memory.
  315. Kuekes, Philip J., Nanoscale multiplexer.
  316. Chen Yong ; Williams R. Stanley, Nanoscale patterning for the formation of extensive wires.
  317. Lieber, Charles M.; Patolsky, Fernando; Zheng, Gengfeng, Nanoscale sensors.
  318. DeHon, André, Nanoscale wire coding for stochastic assembly.
  319. Lieber, Charles M.; Wu, Yue; Yan, Hao, Nanoscale wire-based data storage.
  320. DeHon,Andr챕; Wilson,Michael J.; Lieber,Charles M., Nanoscale wire-based sublithographic programmable logic arrays.
  321. Lieber,Charles M.; Duan,Xiangfeng; Cui,Yi; Huang,Yu; Gudiksen,Mark; Lauhon,Lincoln J.; Wang,Jianfang; Park,Hongkun; Wei,Qingqiao; Liang,Wenjie; Smith,David C.; Wang,Deli; Zhong,Zhaohui, Nanoscale wires and related devices.
  322. Lieber, Charles M.; Rueckes, Thomas; Joselevich, Ernesto; Kim, Kevin, Nanoscopic wire-based devices and arrays.
  323. Lieber, Charles M.; Rueckes, Thomas; Joselevich, Ernesto; Kim, Kevin, Nanoscopic wire-based devices and arrays.
  324. Lieber, Charles M.; Rueckes, Thomas; Joselevich, Ernesto; Kim, Kevin, Nanoscopic wire-based electrical crossbar memory-devices and arrays.
  325. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  326. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  327. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenji, Nanosensors.
  328. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  329. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  330. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  331. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  332. Drndic, Marija; Fischbein, Michael D., Nanostructure assemblies, methods and devices thereof.
  333. Nugent,Alex, Nanotechnology neural network methods and systems.
  334. Bertin, Claude L.; Segal, Brent M.; Rueckes, Thomas; Ward, Jonathan W., Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches.
  335. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Nanotube device structure and methods of fabrication.
  336. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Nanotube device structure and methods of fabrication.
  337. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  338. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  339. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  340. Bertin,Claude L., Nanotube-based logic driver circuits.
  341. Bertin,Claude L., Nanotube-based logic driver circuits.
  342. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Nanotube-based switching element.
  343. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Nanotube-based switching elements.
  344. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Nanotube-based switching elements and logic circuits.
  345. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Nanotube-based switching elements and logic circuits.
  346. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Nanotube-based switching elements with multiple controls.
  347. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Nanotube-based switching elements with multiple controls.
  348. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Nanotube-based switching elements with multiple controls and logic circuits having said elements.
  349. Bertin, Claude L., Nanotube-based transfer devices and related circuits.
  350. Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernard; Brock,Darren K.; Jaiprakash,Venkatachalam C.; Bertin,Claude L., Nanotube-on-gate FET structures and applications.
  351. Kamins,Theodore I; Kuekes,Philip J; Williams,Stanley, Nanowire devices and systems, light-emitting nanowires, and methods of precisely positioning nanoparticles.
  352. Lu, Wei; Xiang, Jie; Wu, Yue; Timko, Brian P.; Yan, Hao; Lieber, Charles M., Nanowire heterostructures.
  353. Kamins, Theodore I.; Bratkovski, Alexandre M.; Sharma, Shashank, Nanowire heterostructures and methods of forming the same.
  354. Jo, Sung Hyun; Kim, Kuk-Hwan; Kumar, Tanmay, Noble metal / non-noble metal electrode for RRAM applications.
  355. Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernard; Brock,Darren; Jaiprakash,Venkatachalam C.; Bertin,Claude L., Non-volatile RAM cell and array using nanotube switch position for information state.
  356. Bertin, Claude L.; Ghenciu, Eliodor G.; Rueckes, Thomas; Manning, H. Montgomery, Non-volatile composite nanoscopic fabric NAND memory arrays and methods of making same.
  357. Bertin, Claude L.; Rueckes, Thomas; Berg, John E., Non-volatile electromechanical field effect devices and circuits using same and methods of forming same.
  358. Bertin,Claude L.; Rueckes,Thomas; Berg,John E., Non-volatile electromechanical field effect devices and circuits using same and methods of forming same.
  359. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernhard; Brock,Darren K.; Jaiprakash,Venkatachalam C., Non-volatile electromechanical field effect devices and circuits using same and methods of forming same.
  360. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernhard; Brock,Darren K.; Jaiprakash,Venkatachalam C., Non-volatile electromechanical field effect devices and circuits using same and methods of forming same.
  361. Black William C. ; Hassoun Marwan M., Non-volatile magnetic circuit.
  362. Lee,Sung Young; Kim,Dong Won; Kim,Min Sang; Park,Dong Gun; Yun,Eun Jung, Non-volatile memory device and method of fabricating the same.
  363. Nazarian, Hagop; Nguyen, Sang, Non-volatile memory with overwrite capability and low write amplification.
  364. Bozano,Luisa Dominica; Carter,Kenneth Raymond; Scott,John Campbell, Non-volatile multi-stable memory device and methods of making and using the same.
  365. Stewart,Duncan R.; Beck,Patricia A.; Ohlberg,Douglas A., Non-volatile programmable impedance nanoscale devices.
  366. Bertin, Claude L.; Guo, Frank; Rueckes, Thomas; Konsek, Steven L.; Meinhold, Mitchell; Strasburg, Max; Sivarajan, Ramesh; Huang, X. M. Henry, Non-volatile shadow latch using a nanotube switch.
  367. Lu, Wei; Jo, Sung Hyun, Non-volatile solid state resistive switching devices.
  368. Lu, Wei; Jo, Sung Hyun, Non-volatile solid state resistive switching devices.
  369. William C. Black ; Bodhisattva Das ; Marwan M. Hassoun, Non-volatile spin dependent tunnel junction circuit.
  370. Bertin,Claude L.; Guo,Frank; Ruckes,Thomas; Konsek,Steven L.; Meinhold,Mitchell; Strasburg,Max; Sivarajan,Ramesh; Huang,X. M. H., Non-volatile-shadow latch using a nanotube switch.
  371. Bertin, Claude L.; Ghenciu, Eliodor G.; Rueckes, Thomas; Manning, H. Montgomery, Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  372. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell, Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  373. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  374. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  375. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  376. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  377. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  378. Bertin, Claude L., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  379. Bertin, Claude L.; Cleavelin, Rinn; Rueckes, Thomas, Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  380. Bertin, Claude L.; Rueckes, Thomas; Manning, H. M., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  381. Bertin, Claude L.; Segal, Brent M., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  382. Bertin, Claude L.; Segal, Brent M., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  383. Black, William C.; Das, Bodhisattva; Hassoun, Marwan M.; Lee, Edward K. F., Nonvolatile programmable logic devices.
  384. Bertin, Claude L.; Rueckes, Thomas; Ward, Jonathan W.; Guo, Frank; Konsek, Steven L.; Meinhold, Mitchell, Nonvolatile resistive memories having scalable two-terminal nanotube switches.
  385. Herner, Scott Brad, On/off ratio for non-volatile memory device and method.
  386. Herner, Scott Brad, On/off ratio for nonvolatile memory device and method.
  387. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M.; Vogeli, Bernhard; Brock, Darren K.; Jaiprakash, Venkatachalam C., One-time programmable, non-volatile field effect devices and methods of making same.
  388. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernhard; Brock,Darren K.; Jaiprakash,Venkatachalam C., One-time programmable, non-volatile field effect devices and methods of making same.
  389. Kuhr, Werner G.; Bocian, David F.; Lindsey, Jonathan S.; Roth, Kristian A., Open circuit potential amperometry and voltammetry.
  390. Kuhr, Werner; Bocian, David; Lindsey, Jonathan S.; Roth, Kristian A., Open circuit potential amperometry and voltammetry.
  391. Mouttet, Blaise Laurent, Operational amplifier with resistance switch crossbar feedback.
  392. Occhipinti,Luigi; Ambrosio,Michele Portico, Optically readable molecular memory obtained using carbon nanotubes, and method for storing information in said molecular memory.
  393. Kingsborough,Richard P.; Sokolik,Igor, Organic thin film Zener diodes.
  394. Whiteford, Jeffery A.; Buretea, Mihai; Scher, Erik; Empedocles, Steve; Meisel, Andreas, Oriented nanostructures and methods of preparing.
  395. Michalewicz, Marek Tadeusz, Particle optics and waveguide apparatus.
  396. Chen, Yong, Passivation layer for molecular electronic device fabrication.
  397. Nugent,Alex, Pattern recognition utilizing a nanotechnology-based neural network.
  398. Wang,Shih Yuan; Islam,M. Saif, Patterning nanoline arrays with spatially varying pitch.
  399. Verhaverbeke, Steven; Nalamasu, Omkaram; Foad, Majeed A.; Venkatesan, Mahalingam; Krishna, Nety M., Patterning of magnetic thin film using energized ions.
  400. Verhaverbeke, Steven; Nalamasu, Omkaram; Foad, Majeed; Venkatesan, Mahalingam; Krishna, Nety M., Patterning of magnetic thin film using energized ions.
  401. Nalamasu, Omkaram; Verhaverbeke, Steven; Foad, Majeed; Venkatesan, Mahalingam; Krishna, Nety M., Patterning of magnetic thin film using energized ions and thermal excitation.
  402. Jeong, Youmi; Lens, Jan-Pleun, Phosphorus containing epoxy compounds and compositions therefrom.
  403. Beck,Patricia A.; Zhang,Xiao An; Zhou,Zhang Lin, Photopatternable molecular circuitry.
  404. Nugent, Alex, Physical neural network design incorporating nanotechnology.
  405. Nugent,Alex, Physical neural network liquid state machine utilizing nanotechnology.
  406. Herner, Scott Brad, Pillar structure for memory device and method.
  407. Herner, Scott Brad, Pillar structure for memory device and method.
  408. McCreery, Richard L., Pixel array.
  409. Nugent,Alex, Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream.
  410. Freitag, Dieter, Poly(block-phosphonato-ester) and poly(block-phosphonato-carbonate) and methods of making same.
  411. Dubrow, Robert S.; Niu, Chunming, Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production.
  412. Dubrow, Robert; Casillas, Carlos Guillermo; Freeman, William P.; Goldman, Jay L.; Hardev, Veeral Dilip; Leon, Francisco; Niu, Chunming; Pereira, Cheri X. Y., Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production.
  413. Tour,James M.; Bahr,Jeffrey L.; Yang,Jiping, Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof.
  414. Tour, James M.; Bahr, Jeffrey L.; Yang, Jiping, Process for derivatizing carbon nanotubes with diazonium species and compositions thereof.
  415. Rueckes,Thomas; Jaiprakash,Venkatachalam C.; Bertin,Claude L., Process for making bit selectable devices having elements made with nanotubes.
  416. Rueckes,Thomas; Jaiprakash,Venkatachalam C.; Bertin,Claude L., Process for making byte erasable devices having elements made with nanotubes.
  417. Kagan,Cherie R.; Lin,Chun, Process for preparing a film having alternating monolayers of a metal-metal bonded complex monolayer and an organic monolayer by layer-by layer growth.
  418. Kagan,Cherie R; Lin,Chun, Process for preparing a film having alternatively monolayers of a metal-metal bonded complex monolayer and an organic monolayer by layer-by layer growth.
  419. Mouttet,Blaise Laurent, Programmable crossbar signal processor.
  420. Mouttet,Blaise Laurent, Programmable crossbar signal processor used as morphware.
  421. Mouttet,Blaise Laurent, Programmable crossbar signal processor used in image processing.
  422. Mouttet,Blaise Laurent, Programmable crossbar signal processor with input/output tip interconnection.
  423. Mouttet,Blaise Laurent, Programmable crossbar signal processor with op-amp outputs.
  424. Mouttet,Blaise Laurent, Programmable crossbar signal processor with rectification layer.
  425. Trimberger,Stephen M., Programmable logic device suitable for implementation in molecular electronics.
  426. Rinerson, Darrell; Chevallier, Christophe J.; Longcor, Steven W.; Ward, Edmond R.; Kinney, Wayne; Hsia, Steve Kuo-Ren, Providing a reference voltage to a cross point memory array.
  427. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Random access memory including nanotube switching elements.
  428. Bertin, Claude L., Receiver circuit using nanotube-based switches and logic.
  429. Bertin,Claude L., Receiver circuit using nanotube-based switches and logic.
  430. Bertin,Claude L., Receiver circuit using nanotube-based switches and transistors.
  431. Lu, Wei; Jo, Sung Hyun, Rectified switching of two-terminal memory via real time filament formation.
  432. Maxwell, Steven Patrick; Jo, Sung Hyun, Reduced diffusion in metal electrode for two-terminal memory.
  433. Hogg, Tad, Reducing variation in randomized nanoscale circuit connections.
  434. Snowdon,Kenneth James; Batzill,Matthias Marcus; Bardou,Fran챌ois, Regular array of microscopic structures on a substrate and devices incorporating same.
  435. Jo, Sung Hyun; Nazarian, Hagop, Resistive RAM with preferental filament formation region and methods.
  436. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Resistive materials comprising mixed nanoscopic particles and carbon nanotubes.
  437. Ma, Yantao; Liu, Jun, Resistive memory.
  438. Ma, Yantao; Liu, Jun, Resistive memory.
  439. Ma, Yantao; Liu, Jun, Resistive memory.
  440. Ma, Yantao; Liu, Jun, Resistive memory.
  441. Nazarian, Hagop; Kumar, Tanmay; Jo, Sung Hyun, Resistive memory cell with solid state diode.
  442. Jo, Sung Hyun; Kim, Kuk-Hwan; Kumar, Tanmay, Resistive memory device and fabrication methods.
  443. Jo, Sung Hyun; Kim, Kuk-Hwan; Kumar, Tanmay, Resistive memory device and fabrication methods.
  444. Choi, Sung-Yool, Resistive memory device and method for fabricating the same.
  445. Lu, Wei, Resistive memory using SiGe material.
  446. Lu, Wei, Resistive memory using SiGe material.
  447. Nazarian, Hagop; Nguyen, Sang, Resistive random access memory equalization and sensing.
  448. Jo, Sung Hyun; Kim, Kuk-Hwan, Resistive random access memory with non-linear current-voltage relationship.
  449. Kumar, Tanmay, Resistive switching device structure with improved data retention for non-volatile memory device and method.
  450. Jo, Sung Hyun, Resistor structure for a non-volatile memory device and method.
  451. Jo, Sung Hyun, Resistor structure for a non-volatile memory device and method.
  452. Bulovic, Vladimir; Mandell, Aaron; Perlman, Andrew, Reversible field-programmable electric interconnects.
  453. Bulovic,Vladimir; Mandell,Aaron; Perlman,Andrew, Reversible field-programmable electric interconnects.
  454. Clark, Mark Harold; Vasquez, Natividad; Maxwell, Steven, Scalable RRAM device architecture for a non-volatile memory device and method.
  455. Clark, Mark Harold; Herner, Scott Brad, Seed layer for a p+ silicon germanium material for a non-volatile memory device and method.
  456. Herner, Scott Brad; Vasquez, Natividad, Selective removal method and structure of silver in resistive switching device for a non-volatile memory device.
  457. Beebe, Jeremy M.; Kushmer, James G., Self-assembled monolayer based silver switches.
  458. Segal, Brent M.; Rueckes, Thomas; Vogeli, Bernhard; Brock, Darren; Jaiprakash, Venkatachalam C.; Bertin, Claude L., Sensor platform using a horizontally oriented nanotube element.
  459. Stasiak,James; Peters,Kevin, Sensor produced using imprint lithography.
  460. Hsu, Sheng Teng, Shared bit line cross point memory array.
  461. Lu, Wei; Jo, Sung Hyun; Kim, Kuk-Hwan, Silicon based nanoscale crossbar memory.
  462. Lu, Wei; Jo, Sung Hyun; Kim, Kuk-Hwan, Silicon based nanoscale crossbar memory.
  463. Herner, Scott Brad, Silver interconnects for stacked non-volatile memory device and method.
  464. Herner, Scott Brad, Stackable non-volatile resistive switching memory device.
  465. Herner, Scott Brad, Stackable non-volatile resistive switching memory device and method of fabricating the same.
  466. Herner, Scott Brad, Stackable non-volatile resistive switching memory devices.
  467. DeHon, Andr?; Lieber, Charles M.; Lincoln, Patrick D.; Savage, John E., Stochastic assembly of sublithographic nanoscale interfaces.
  468. Bertin, Claude L., Storage elements using nanotube switching elements.
  469. Bertin,Claude L., Storage elements using nanotube switching elements.
  470. Bertin,Claude L., Storage elements using nanotube switching elements.
  471. Gee, Harry Yue; Clark, Mark Harold; Maxwell, Steven Patrick; Jo, Sung Hyun; Vasquez, Jr., Natividad, Sub-oxide interface layer for two-terminal memory.
  472. DeHon, Andr?; Lieber, Charles M.; Lincoln, Patrick D.; Savage, John E., Sublithographic nanoscale memory architecture.
  473. Junzhong Li ; Dorota Gryko ; Jonathan S. Lindsey, Substrates carrying polymers of linked sandwich coordination compounds and methods of use thereof.
  474. Li, Junzhong; Gryko, Dorota; Lindsey, Jonathan S., Substrates carrying polymers of linked sandwich coordination compounds and methods of use thereof.
  475. Williams, R. Stanley; Li, Zhiyong; Ohlberg, Douglas; Kuekes, Philip J.; Stewart, Duncan, Switching device and methods for controlling electron tunneling therein.
  476. Lu, Wei; Jo, Sung Hyun, Switching device having a non-linear element.
  477. Lu, Wei; Jo, Sung Hyun; Nazarian, Hagop, Switching device having a non-linear element.
  478. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, Thomas, Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same.
  479. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Switching materials comprising mixed nanoscopic particles and carbon nanotubes and methods of making and using the same.
  480. Mouttet, Blaise Laurent, Symmetrical programmable memresistor crossbar structure.
  481. Picciotto, Carl E.; Hartwell, Peter George, System for coupling wire to semiconductor region.
  482. Picciotto,Carl E.; Hartwell,Peter George, Systems and methods for electrically coupling wires and conductors.
  483. Lemmi, Francesco; Stumbo, David P., Systems and methods for harvesting and integrating nanowires.
  484. Romano,Linda T.; Chen,Jian; Duan,Xiangfeng; Dubrow,Robert S.; Empedocles,Stephen A.; Goldman,Jay L.; Hamilton,James M.; Heald,David L.; Lemmi,Francesco; Niu,Chunming; Pan,Yaoling; Pontis,George; Sahi,Vijendra; Scher,Erik C.; Stumbo,David P.; Whiteford,Jeffery A., Systems and methods for harvesting and integrating nanowires.
  485. Duan, Xiangfeng; Bernatis, Paul; Fischer-Colbrie, Alice; Hamilton, James M.; Lemmi, Francesco; Pan, Yaoling; Parce, J. Wallace; Pereira, Cheri X. Y.; Stumbo, David P., Systems and methods for harvesting and reducing contamination in nanowires.
  486. Taylor, David, Systems and methods for nanowire growth.
  487. Mostarshed, Shahriar; Romano, Linda T., Systems and methods for nanowire growth and harvesting.
  488. Pan,Yaoling; Duan,Xiangfeng; Dubrow,Robert S.; Goldman,Jay L.; Mostarshed,Shahriar; Niu,Chunming; Romano,Linda T.; Stumbo,Dave, Systems and methods for nanowire growth and harvesting.
  489. Pan,Yaoling; Duan,Xiangfeng; Dubrow,Robert S.; Goldman,Jay L.; Mostarshed,Shahriar; Niu,Chunming; Romano,Linda T.; Stumbo,Dave, Systems and methods for nanowire growth and harvesting.
  490. Niu, Chunming; Goldman, Jay L.; Duan, Xiangfeng; Sahi, Vijendra, Systems and methods for nanowire growth and manufacturing.
  491. Picciotto,Carl E.; Hartwell,Peter George, Systems and methods for rectifying and detecting signals.
  492. Gu, Shiqun; McGrath, Peter G.; Elmer, James; Carter, Richard J.; Rueckes, Thomas, Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers.
  493. Nugent,Alex, Temporal summation device utilizing nanotechnology.
  494. Nugent, Alex, Thermodynamic bit formed of two memristors.
  495. Herner, Scott Brad, Thin film transistor steering element for a non-volatile memory device.
  496. Scheuerlein, Roy E.; Ilkbahar, Alper; Fasoli, Luca G., Three-dimensional memory device incorporating segmented array line memory array.
  497. Scheuerlein, Roy E.; Ilkbahar, Alper; Fasoli, Luca G., Three-dimensional memory device incorporating segmented array line memory array.
  498. Scheuerlein,Roy E.; Ilkbahar,Alper; Fasoli,Luca, Three-dimensional memory device incorporating segmented bit line memory array.
  499. Jo, Sung Hyun; Bettinger, Joanna; Liu, Xianliang, Three-dimensional oblique two-terminal memory with enhanced electric field.
  500. Jo, Sung Hyun; Kim, Kuk-Hwan; Bettinger, Joanna, Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects.
  501. Jo, Sung Hyun; Kim, Kuk-Hwan; Bettinger, Joanna, Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects.
  502. Fieldhouse, Douglas M.; Wick, Kingsley R., Toll free calling account recharge system and method.
  503. Nugent,Alex, Training of a physical neural network.
  504. Petti,Christopher J.; Scheuerlein,Roy E.; Kumar,Tanmay; Bandyopadhyay,Abhijit, Transistor layout configuration for tight-pitched memory array lines.
  505. Petti,Christopher J.; Scheuerlein,Roy E.; Kumar,Tanmay; Bandyopadhyay,Abhijit, Transistor layout configuration for tight-pitched memory array lines.
  506. Bertin, Claude L., Tri-state circuit using nanotube switching elements.
  507. Bertin,Claude L., Tri-state circuit using nanotube switching elements.
  508. Segal, Brent M.; Ward, Jonathan W.; Rueckes, Thomas, Triodes using nanofabric articles and methods of making the same.
  509. Jo, Sung Hyun; Herner, Scott Brad, Two terminal resistive switching device structure and method of fabricating.
  510. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Ruckes, Thomas; Strasburg, Max; Guo, Frank; Huang, X. M. Henry; Sivarajan, Ramesh, Two-terminal nanotube devices and systems and methods of making same.
  511. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Rueckes, Thomas; Strasburg, Max; Guo, Frank; Huang, X. M. Henry; Sivarajan, Ramesh, Two-terminal nanotube devices and systems and methods of making same.
  512. Manning, H. Montgomery; Rueckes, Thomas; Ward, Jonathan W.; Segal, Brent M., Two-terminal nanotube devices including a nanotube bridge and methods of making same.
  513. Rinerson, Darrell; Chevallier, Christophe J.; Kinney, Wayne; Lambertson, Roy; Sanchez, Jr., John E.; Schloss, Lawrence; Swab, Philip; Ward, Edmond, Two-terminal reversibly switchable memory device.
  514. Rinerson, Darrell; Chevallier, Christophe J.; Kinney, Wayne; Lambertson, Roy; Sanchez, Jr., John E.; Schloss, Lawrence; Swab, Philip; Ward, Edmond, Two-terminal reversibly switchable memory device.
  515. Rinerson, Darrell; Chevallier, Christophe J.; Kinney, Wayne; Lambertson, Roy; Sanchez, Jr., John E.; Schloss, Lawrence; Swab, Philip; Ward, Edmond, Two-terminal reversibly switchable memory device.
  516. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Two-terminal switching device using a composite material of nanoscopic particles and carbon nanotubes.
  517. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Two-terminal switching devices comprising coated nanotube elements.
  518. Nugent,Alex, Universal logic gate utilizing nanotechnology.
  519. Nugent,Alex, Utilized nanotechnology apparatus using a neutral network, a solution and a connection gap.
  520. Nugent,Alex, Variable resistor apparatus formed utilizing nanotechnology.
  521. Bateman, Bruce, Vertical cross point arrays for ultra high density memory applications.
  522. Bateman, Bruce Lynn, Vertical cross point arrays for ultra high density memory applications.
  523. Bateman, Bruce Lynn, Vertical cross-point arrays for ultra-high-density memory applications.
  524. Herner, Scott Brad, Vertical diodes for non-volatile memory device.
  525. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Volatile nanotube-based switching elements with multiple controls.
  526. Scheuerlein, Roy E., Word line arrangement having multi-layer word line segments for three-dimensional memory array.
  527. Scheuerlein,Roy E., Word line arrangement having multi-layer word line segments for three-dimensional memory array.
  528. Scheuerlein,Roy E., Word line arrangement having multi-layer word line segments for three-dimensional memory array.
  529. Scheuerlein,Roy E., Word line arrangement having segmented word lines.
  530. Herner, Scott Brad, p+ Polysilicon material on aluminum for non-volatile memory device and method.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로