$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Carbide nanomaterials 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • D01F-009/08
  • D01F-009/12
출원번호 US-0477080 (1995-06-07)
발명자 / 주소
  • Lieber Charles M.
  • Dai Hongjie
출원인 / 주소
  • President and Fellows of Harvard College
대리인 / 주소
    Fish & Richardson P.C.
인용정보 피인용 횟수 : 199  인용 특허 : 5

초록

A nanoscale carbide article consisting essentially of covalently bounded elements M.sup.1, M.sup.2, and C having the molar ratio M.sup.1 :M.sup.2 :C::1:y:x, wherein the article has an aspect ratio of between 10 and 1000 and has a shorter axis of between 1 and 40 nanometers.

대표청구항

[ What is claimed is:] [1.] A carbide nanorod consisting essentially of TiC, NbC, Fe.sub.3 C, or BC.sub.x in which x is between 0.1 and 2.1, inclusive, wherein said nanorod has an aspect ratio of between 11 and 1000, and has a shorter axis of between 1 and 40 nanometers.

이 특허에 인용된 특허 (5)

  1. D\Angelo Charles (Southboro MA) Baldoni ; II Joseph G. (Norfolk MA) Buljan Sergej-Tomislav (Acton MA), Chemical vapor deposition reactor for producing metal carbide or nitride whiskers.
  2. D\Angelo Charles (Southboro MA) Baldoni ; II Joseph G. (Norfolk MA) Buljan Sergej-Tomislav (Acton MA), Metal carbide, nitride, or carbonitride whiskers coated with metal carbides, nitrides, carbonitrides, or oxides.
  3. Nadkarni Sadashiv (Jonquiere CAX) Jain Mukesh (Jonquiere CAX) Huni Jean-Paul (Jonquiere CAX), Process for producing silicon carbide and metal carbides.
  4. Dubots Dominique (Le Fayet FRX) Dubrous Francis (Sallanches FRX), Process for the preparation of silicon carbide whiskers.
  5. Qi Dongxin (Placentia CA) Coyle Roy T. (Yorba Linda CA) Tait Richard D. (Fullerton CA) Orth Rick J. (Diamond Bar CA), Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers.

이 특허를 인용한 특허 (199)

  1. Ootsuka, Fumio, 3D stacked multilayer semiconductor memory using doped select transistor channel.
  2. Oosterlaken, Theodorus; de Ridder, Chris; Jdira, Lucian, Apparatus and method for manufacturing a semiconductor device.
  3. Kamiya, Tatsuo, Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum.
  4. Dubrow, Robert S.; Casillas, Carlos, Apparatus and methods for high density nanowire growth.
  5. Yadav, Tapesh; Au, Ming; Miremadi, Bijan; Freim, John; Avniel, Yuval; Dirstine, Roger; Alexander, John; Franke, Evan, Applications and devices based on nanostructured non-stoichiometric substances.
  6. Stumbo,David P.; Empedocles,Stephen A.; Leon,Francisco; Parce,J. Wallace, Artificial dielectrics using nanostructures.
  7. Tian, Bozhi; Xie, Ping; Kempa, Thomas J.; Lieber, Charles M.; Cohen-Karni, Itzhaq; Qing, Quan; Duan, Xiaojie, Bent nanowires and related probing of species.
  8. Lieber, Charles M.; Tian, Bozhi; Jiang, Xiaocheng, Branched nanoscale wires.
  9. Moy, David; Niu, Chunming; Ma, Jun; Willey, James M., Carbide and oxycarbide based compositions, rigid porous structures including the same, methods of making and using the same.
  10. Tsakalakos,Loucas; Han,Sung Su; Osaheni,John Aibangbee; Mani,Vanita, Carbide nanostructures and methods for making same.
  11. Santiago,Francisco; Gehman, Jr.,Victor H.; Long,Karen J.; Boulais,Kevin A., Carbon nanotube apparatus and method of carbon nanotube modification.
  12. Dai,Hongjie; Kong,Jing, Carbon nanotube devices.
  13. Hendricks,Terry Joseph; Heben,Michael J., Carbon nanotube heat-exchange systems.
  14. den Hartog Besselink, Edwin; Garssen, Adriaan; Dirkmaat, Marco, Cassette holder assembly for a substrate cassette and holding member for use in such assembly.
  15. Zaitsu, Masaru; Fukazawa, Atsuki; Fukuda, Hideaki, Continuous process incorporating atomic layer etching.
  16. Miller, Jeffrey, Continuously variable graded artificial dielectrics using nanostructures.
  17. Thelander, Claes; Samuelson, Lars, Data storage nanostructures.
  18. Raisanen, Petri; Shero, Eric; Haukka, Suvi; Milligan, Robert Brennan; Givens, Michael Eugene, Deposition of metal borides.
  19. Zhu, Chiyu; Shrestha, Kiran; Haukka, Suvi, Deposition of metal borides.
  20. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Device selection circuitry constructed with nanotube ribbon technology.
  21. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Device selection circuitry constructed with nanotube technology.
  22. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  23. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  24. Dubrow, Robert S.; Miller, Jeffrey; Stumbo, David P., Dielectrics using substantially longitudinally oriented insulated conductive wires.
  25. Seifert,Werner; Samuelson,Lars Ivar; Ohlsson,Bj��rn Jonas; Borgstr��m,Lars Magnus, Directionally controlled growth of nanowhiskers.
  26. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices.
  27. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  28. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  29. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  30. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  31. Park, Hee Jung; Son, Yoon Chul; Jung, Doh Won; Lee, Woojin; Choi, Jae-Young, Electrically conductive thin films containing Re2C.
  32. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  33. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  34. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  35. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory having cell selection circuitry constructed with nanotube technology.
  36. Rueckes, Thomas; Segal, Brent M.; Bertin, Claude L., Electromechanical three-trace junction devices.
  37. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Electromechanical three-trace junction devices.
  38. Rueckes,Thomas; Segal,Brent M.; Bertin,Claude, Electromechanical three-trace junction devices.
  39. Pedersen, Bo; Samuelson, Lars; Ohlsson, Jonas; Svensson, Patrik, Elevated LED.
  40. Pedersen, Bo; Samuelson, Lars; Ohlsson, Jonas; Svensson, Patrik, Elevated LED.
  41. Milligan, Robert Brennan, Formation of boron-doped titanium metal films with high work function.
  42. Samuelson, Lars Ivar; Martensson, Thomas M. I., Formation of nanowhiskers on a substrate of dissimilar material.
  43. Samuelson, Lars Ivar; Martensson, Thomas M. I., Formation of nanowhiskers on a substrate of dissimilar material.
  44. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  45. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  46. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  47. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  48. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Hybrid circuit having nanotube electromechanical memory.
  49. Belcher, Angela M.; Mao, Chuanbin; Solis, Daniel J., Inorganic nanowires.
  50. Belcher, Angela M.; Mao, Chuanbin; Solis, Daniel J., Inorganic nanowires.
  51. Belcher, Angela M.; Mao, Chuanbin; Solis, Daniel J., Inorganic nanowires.
  52. Samuelson, Lars Ivar; Pedersen, Bo; Ohlsson, Bjorn Jonas, LED with upstanding nanowire structure and method of producing such.
  53. Pozvonkov, Mikhail; Deininger, Mark A., Low temperature solid oxide cells.
  54. Desai, Tejal; Daniels, R. Hugh; Sahi, Vijendra, Medical device applications of nanostructured surfaces.
  55. Dubrow, Robert S.; Bock, Lawrence A.; Daniels, R. Hugh; Hardev, Veeral D.; Niu, Chunming; Sahi, Vijendra, Medical device applications of nanostructured surfaces.
  56. Dubrow, Robert S.; Bock, Lawrence A.; Daniels, R. Hugh; Hardev, Veeral D.; Niu, Chunming; Sahi, Vijendra, Medical device applications of nanostructured surfaces.
  57. Jung, Sung-Hoon, Metal oxide protective layer for a semiconductor device.
  58. Pore, Viljami, Method and apparatus for filling a gap.
  59. Pore, Viljami; Knaepen, Werner; Jongbloed, Bert; Pierreux, Dieter; Van Aerde, Steven R. A.; Haukka, Suvi; Fukuzawa, Atsuki; Fukuda, Hideaki, Method and apparatus for filling a gap.
  60. Pore, Viljami; Knaepen, Werner; Jongbloed, Bert; Pierreux, Dieter; Van Der Star, Gido; Suzuki, Toshiya, Method and apparatus for filling a gap.
  61. McNeil, Scott Earl; Fritts, Martin Joseph; Heddleston, Roy Reed; Mark, Martin B., Method and system for countering laser technology.
  62. McNeil,Scott Earl; Fritts,Martin Joseph; Heddleston,Roy Reed; Mark,Martin B., Method and system for countering laser technology.
  63. McNeil, Scott Earl, Method and system for detection using nanodot taggants.
  64. Tolle, John; Hill, Eric; Winkler, Jereld Lee, Method and system for in situ formation of gas-phase compounds.
  65. Jung, Sung-Hoon; Raisanen, Petri; Liu, Eric Jen Cheng; Schmotzer, Mike, Method and system to reduce outgassing in a reaction chamber.
  66. Winkler, Jereld Lee, Method and systems for in-situ formation of intermediate reactive species.
  67. Suemori, Hidemi, Method for depositing dielectric film in trenches by PEALD.
  68. Kang, DongSeok, Method for depositing thin film.
  69. Takamure, Noboru; Okabe, Tatsuhiro, Method for forming Ti-containing film by PEALD using TDMAT or TDEAT.
  70. Shiba, Eiichiro, Method for forming aluminum nitride-based film by PEALD.
  71. Winkler, Jereld Lee, Method for forming conformal carbon films, structures conformal carbon film, and system of forming same.
  72. Fukazawa, Atsuki, Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition.
  73. Fukazawa, Atsuki; Fukuda, Hideaki; Takamure, Noboru; Zaitsu, Masaru, Method for forming dielectric film in trenches by PEALD using H-containing gas.
  74. Kimura, Yosuke; de Roest, David, Method for forming film having low resistance and shallow junction depth.
  75. Ishikawa, Dai; Fukazawa, Atsuki, Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches.
  76. Namba, Kunitoshi, Method for forming silicon oxide cap layer for solid state diffusion process.
  77. Shiba, Eiichiro, Method for performing uniform processing in gas system-sharing multiple reaction chambers.
  78. Yamagishi, Takayuki; Suwada, Masaei; Tanaka, Hiroyuki, Method for positioning wafers in multiple wafer transport.
  79. Kato, Richika; Nakano, Ryu, Method for protecting layer by forming hydrocarbon-based extremely thin film.
  80. Kato, Richika; Okuro, Seiji; Namba, Kunitoshi; Nonaka, Yuya; Nakano, Akinori, Method for protecting layer by forming hydrocarbon-based extremely thin film.
  81. Zaitsu, Masaru, Method of atomic layer etching using functional group-containing fluorocarbon.
  82. Santiago, Francisco; Gehman, Jr., Victor H.; Long, Karen J.; Boulais, Kevin A., Method of carbon nanotube modification.
  83. Santiago, Francisco; Gehman, Jr., Victor H.; Long, Karen J.; Boulais, Kevin A., Method of carbon nanotube modification.
  84. Santiago, Francisco; Gehman, Jr., Victor H.; Long, Karen J.; Boulais, Kevin A., Method of carbon nanotube modification.
  85. Zaitsu, Masaru; Kobayashi, Nobuyoshi; Kobayashi, Akiko; Hori, Masaru; Kondo, Hiroki; Tsutsumi, Takayoshi, Method of cyclic dry etching using etchant film.
  86. Knaepen, Werner; Maes, Jan Willem; Jongbloed, Bert; Kachel, Krzysztof Kamil; Pierreux, Dieter; De Roest, David Kurt, Method of forming a structure on a substrate.
  87. Lee, Choong Man; Yoo, Yong Min; Kim, Young Jae; Chun, Seung Ju; Kim, Sun Ja, Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method.
  88. Chun, Seung Ju; Yoo, Yong Min; Choi, Jong Wan; Kim, Young Jae; Kim, Sun Ja; Lim, Wan Gyu; Min, Yoon Ki; Lee, Hae Jin; Yoo, Tae Hee, Method of processing a substrate and a device manufactured by using the method.
  89. Freer, Erik; Hamilton, James M.; Stumbo, David P.; Komiya, Kenji; Shibata, Akihide, Methods and systems for electric field deposition of nanowires and other devices.
  90. Kohen, David; Profijt, Harald Benjamin, Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures.
  91. Raisanen, Petri; Givens, Michael Eugene, Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures.
  92. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  93. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  94. Romano,Linda T.; Hamilton,James M., Methods for nanowire growth.
  95. Robbins, Virginia, Methods for oriented growth of nanowires on patterned substrates.
  96. Budaragin, Leonid V.; Deininger, Mark A.; Pozvonkov, Mikhail; Garrett, Norman H.; Spears, II, D. Morgan, Methods for providing prophylactic surface treatment for fluid processing systems and components thereof.
  97. Budaragin, Leonid V.; Deininger, Mark A.; Pozvonkov, Mikhail; Garrett, Norman H.; Spears, II, D. Morgan, Methods for providing prophylactic surface treatment for fluid processing systems and components thereof.
  98. Deininger, Mark A.; Pozvonkov, Mikhail; Spears, D. Morgan; Garrett, Norman H.; Budaragin, Leonid V., Methods for providing prophylactic surface treatment for fluid processing systems and components thereof.
  99. Margetis, Joe; Tolle, John, Methods of forming highly p-type doped germanium tin films and structures and devices including the films.
  100. Margetis, Joe; Tolle, John, Methods of forming silicon germanium tin films and structures and devices including the films.
  101. Hartlove, Jason; Barr, Ronald; Dubrow, Robert S., Methods of generating liquidphobic surfaces.
  102. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  103. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  104. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  105. Empedocles, Stephen; Bock, Larry; Chow, Calvin; Duan, Xianfeng; Niu, Chungming; Pontis, George; Sahi, Vijendra; Romano, Linda T.; Stumbo, David, Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices.
  106. Empedocles,Stephen; Bock,Larry; Chow,Calvin Y. H.; Duan,Xianfeng; Niu,Chunming; Pontis,George; Sahi,Vijendra; Romano,Linda T.; Stumbo,David, Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices.
  107. Rueckes, Thomas; Segal, Brent M., Methods of nanotube films and articles.
  108. Rueckes,Thomas; Segal,Brent M., Methods of nanotube films and articles.
  109. Rueckes,Thomas; Segal,Brent M., Methods of nanotubes films and articles.
  110. Duan, Xiangfeng; Daniels, Hugh; Niu, Chunming; Sahi, Vijendra; Hamilton, James; Romano, Linda T., Methods of positioning and/or orienting nanostructures.
  111. Duan, Xiangfeng; Daniels, R. Hugh; Niu, Chunming; Sahi, Vijendra; Hamilton, James M.; Romano, Linda T., Methods of positioning and/or orienting nanostructures.
  112. Duan,Xiangfeng; Daniels,R. Hugh; Niu,Chunming; Sahi,Vijendra; Hamilton,James M.; Romano,Linda T., Methods of positioning and/or orienting nanostructures.
  113. Duan,Xiangfeng; Daniels,R. Hugh; Niu,Chunming; Sahi,Vijendra; Hamilton,James M.; Romano,Linda T., Methods of positioning and/or orienting nanostructures.
  114. Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  115. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  116. Ma, Jun; Moy, David, Modified carbide and oxycarbide containing catalysts and methods of making and using thereof.
  117. Ma,Jun; Moy,David, Modified carbide and oxycarbide containing catalysts and methods of making and using thereof.
  118. Samuelson, Lars Ivar; Svensson, Patrik; Ohlsson, Jonas; Lowgren, Truls, Nanoelectronic structure and method of producing such.
  119. Samuelson, Lars Ivar; Svensson, Patrik; Ohlsson, Jonas; Lowgren, Truls, Nanoelectronic structure and method of producing such.
  120. Samuelson, Lars Ivar; Svensson, Patrik; Ohlsson, Jonas; Lowgren, Truls, Nanoelectronic structure and method of producing such.
  121. Samuelson, Lars Ivar; Svensson, Patrik; Ohlsson, Jonas; Lowgren, Truls, Nanoelectronic structure and method of producing such.
  122. Samuelson, Lars Ivar; Svensson, Patrik; Ohlsson, Jonas; Lowgren, Truls, Nanoelectronic structure and method of producing such.
  123. Chow, Calvin Y. H.; Dubrow, Robert, Nanofiber surface based capacitors.
  124. Chow,Calvin Y. H.; Dubrow,Robert S., Nanofiber surface based capacitors.
  125. Chow,Calvin Y. H.; Dubrow,Robert S., Nanofiber surface based capacitors.
  126. Chow,Calvin Y. H.; Dubrow,Robert S., Nanofiber surface based capacitors.
  127. Chow,Calvin Y.H.; Dubrow,Robert S., Nanofiber surface based capacitors.
  128. Dubrow, Robert; Daniels, Robert Hugh, Nanofiber surfaces for use in enhanced surface area applications.
  129. Schroder,Kurt A.; Jackson,Doug K., Nanopowder synthesis using pulsed arc discharge and applied magnetic field.
  130. Lieber,Charles M.; Duan,Xiangfeng; Huang,Yu; Agarwal,Ritesh, Nanoscale coherent optical components.
  131. Lieber, Charles M.; Patolsky, Fernando; Zheng, Gengfeng, Nanoscale sensors.
  132. Lieber, Charles M.; Wu, Yue; Yan, Hao, Nanoscale wire-based data storage.
  133. Lieber,Charles M.; Duan,Xiangfeng; Cui,Yi; Huang,Yu; Gudiksen,Mark; Lauhon,Lincoln J.; Wang,Jianfang; Park,Hongkun; Wei,Qingqiao; Liang,Wenjie; Smith,David C.; Wang,Deli; Zhong,Zhaohui, Nanoscale wires and related devices.
  134. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  135. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  136. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenji, Nanosensors.
  137. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  138. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  139. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  140. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  141. Daniels, R. Hugh; Li, Esther; Rogers, Erica J., Nanostructure-enhanced platelet binding and hemostatic structures.
  142. Samuelson, Lars Ivar; Pedersen, Bo; Ohlsson, Bjorn Jonas; Martynov, Yourii; Konsek, Steven L.; Hanberg, Peter Jesper, Nanostructured LED array with collimating reflectors.
  143. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas, Nanostructures and methods for manufacturing the same.
  144. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas, Nanostructures and methods for manufacturing the same.
  145. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas, Nanostructures and methods for manufacturing the same.
  146. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas, Nanostructures and methods for manufacturing the same.
  147. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas, Nanostructures and methods for manufacturing the same.
  148. Samuelson,Lars Ivar; Ohlsson,Bjorn Jonas, Nanostructures and methods for manufacturing the same.
  149. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  150. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  151. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  152. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas; Ledebo, Lars-Ake, Nanowhiskers with PN junctions, doped nanowhiskers, and methods for preparing them.
  153. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas; Ledebo, Lars-Ake, Nanowhiskers with PN junctions, doped nanowhiskers, and methods for preparing them.
  154. Samuelson,Lars Ivar; Ohlsson,Bjorn Jonas; Ledebo,Lars Åke, Nanowhiskers with pn junctions, doped nanowhiskers, and methods for preparing them.
  155. Lu, Wei; Xiang, Jie; Wu, Yue; Timko, Brian P.; Yan, Hao; Lieber, Charles M., Nanowire heterostructures.
  156. Zhu, Chiyu; Asikainen, Timo; Milligan, Robert Brennan, NbMC layers.
  157. Tatsuoki Kohno JP; Norio Takami JP; Hiroki Inagaki JP; Tomokazu Morita JP; Shirou Takeno JP, Nonaqueous electrolyte secondary battery.
  158. Whiteford, Jeffery A.; Buretea, Mihai; Scher, Erik; Empedocles, Steve; Meisel, Andreas, Oriented nanostructures and methods of preparing.
  159. Dubrow, Robert S.; Niu, Chunming, Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production.
  160. Dubrow, Robert; Casillas, Carlos Guillermo; Freeman, William P.; Goldman, Jay L.; Hardev, Veeral Dilip; Leon, Francisco; Niu, Chunming; Pereira, Cheri X. Y., Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production.
  161. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas; Martensson, Thomas M. I., Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them.
  162. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas; Martensson, Thomas M. I., Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them.
  163. Margetis, Joe; Tolle, John; Bartlett, Gregory; Bhargava, Nupur, Process for forming a film on a substrate using multi-port injection assemblies.
  164. Kourtakis, Konstantinos, Process for preparing boron carbon nanorods.
  165. Alokozai, Fred; Milligan, Robert Brennan, Process gas management for an inductively-coupled plasma deposition reactor.
  166. Alokozai, Fred; Milligan, Robert Brennan, Process gas management for an inductively-coupled plasma deposition reactor.
  167. Winkler, Jereld Lee, Pulsed remote plasma method and system.
  168. Schroder, Kurt A.; Jackson, Doug K., Radial pulsed arc discharge gun for synthesizing nanopowders.
  169. Schroder,Kurt A.; Jackson,Doug K., Radial pulsed arc discharge gun for synthesizing nanopowders.
  170. Keller, Teddy M.; Saab, Andrew P.; Laskoski, Matthew, Refractory metal boride ceramics and methods of making thereof.
  171. Daniels, R. Hugh; Dubrow, Robert S.; Enzerink, Robert; Li, Esther; Sahi, Vijendra; Goldman, Jay L.; Parce, J. Wallace, Resorbable nanoenhanced hemostatic structures and bandage materials.
  172. Zhu, Chiyu, Selective film deposition method to form air gaps.
  173. Kim, Young Jae; Choi, Seung Woo; Yoo, Yong Min, Semiconductor device and manufacturing method thereof.
  174. Milligan, Robert Brennan; Alokozai, Fred, Semiconductor reaction chamber with plasma capabilities.
  175. Arai, Izumi, Single-and dual-chamber module-attachable wafer-handling chamber.
  176. Deininger, Mark A.; Budaragin, Leonid V.; Fisher, Paul D.; Pozvonkov, Mikhail; Spears, II, D. Morgan, Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same.
  177. Deininger, Mark; Pozvonkov, Mikhail; Fisher, Paul; Budaragin, Leonid V.; Spears, D. Morgan, Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same.
  178. Xie, Qi; de Roest, David; Woodruff, Jacob; Givens, Michael Eugene; Maes, Jan Willem; Blanquart, Timothee, Source/drain performance through conformal solid state doping.
  179. Tolle, John, Structures and devices including germanium-tin films and methods of forming same.
  180. Dubrow, Robert S., Structures, systems and methods for joining articles and materials and uses therefor.
  181. Dubrow,Robert, Structures, systems and methods for joining articles and materials and uses therefor.
  182. Dubrow,Robert, Structures, systems and methods for joining articles and materials and uses therefor.
  183. Dubrow,Robert, Structures, systems and methods for joining articles and materials and uses therefor.
  184. Dubrow, Robert, Super-hydrophobic surfaces, methods of their construction and uses therefor.
  185. Inoue, Kazuhiro; Watanabe, Masanobu; Nakagawara, Osamu; Saeki, Masahiko, Surface acoustic wave device with improved electrode.
  186. Jeong, Sang Jin; Han, Jeung Hoon; Choi, Young Seok; Park, Ju Hyuk, Susceptor for semiconductor substrate processing apparatus.
  187. Tang, Fu; Givens, Michael Eugene; Xie, Qi; Raisanen, Petri, System and method for gas-phase sulfur passivation of a semiconductor surface.
  188. Lawson, Keith R.; Givens, Michael E., Systems and methods for dynamic semiconductor process scheduling.
  189. Lemmi, Francesco; Stumbo, David P., Systems and methods for harvesting and integrating nanowires.
  190. Romano,Linda T.; Chen,Jian; Duan,Xiangfeng; Dubrow,Robert S.; Empedocles,Stephen A.; Goldman,Jay L.; Hamilton,James M.; Heald,David L.; Lemmi,Francesco; Niu,Chunming; Pan,Yaoling; Pontis,George; Sahi,Vijendra; Scher,Erik C.; Stumbo,David P.; Whiteford,Jeffery A., Systems and methods for harvesting and integrating nanowires.
  191. Duan, Xiangfeng; Bernatis, Paul; Fischer-Colbrie, Alice; Hamilton, James M.; Lemmi, Francesco; Pan, Yaoling; Parce, J. Wallace; Pereira, Cheri X. Y.; Stumbo, David P., Systems and methods for harvesting and reducing contamination in nanowires.
  192. Taylor, David, Systems and methods for nanowire growth.
  193. Mostarshed, Shahriar; Romano, Linda T., Systems and methods for nanowire growth and harvesting.
  194. Pan,Yaoling; Duan,Xiangfeng; Dubrow,Robert S.; Goldman,Jay L.; Mostarshed,Shahriar; Niu,Chunming; Romano,Linda T.; Stumbo,Dave, Systems and methods for nanowire growth and harvesting.
  195. Pan,Yaoling; Duan,Xiangfeng; Dubrow,Robert S.; Goldman,Jay L.; Mostarshed,Shahriar; Niu,Chunming; Romano,Linda T.; Stumbo,Dave, Systems and methods for nanowire growth and harvesting.
  196. Niu, Chunming; Goldman, Jay L.; Duan, Xiangfeng; Sahi, Vijendra, Systems and methods for nanowire growth and manufacturing.
  197. Coomer, Stephen Dale, Variable adjustment for precise matching of multiple chamber cavity housings.
  198. Shugrue, John Kevin, Variable conductance gas distribution apparatus and method.
  199. Schmotzer, Michael; Whaley, Shawn, Variable gap hard stop design.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로