$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Remote manipulator with force feedback and control

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) G05B-019/04    G05B-019/18   
미국특허분류(USC) 700/254 ; 700/257 ; 700/262 ; 700/264 ; 345/130 ; 345/161 ; 345/163 ; 600/130 ; 414/004 ; 744/900.1
출원번호 US-0176978 (1998-10-22)
발명자 / 주소
출원인 / 주소
대리인 / 주소
    Oyen Wiggs Green & Mutala
인용정보 피인용 횟수 : 29  인용 특허 : 8
초록

A haptic interface for a remote manipulator uses a tunable spring to provide force reflection. The remote manipulator has an operating member coupled to the tunable spring. The operating member is also coupled to a manipulator member. A controller monitors the force with which an operator so moves the operating member and varies a spring constant of the tunable spring to keep the force exerted by the manipulator member on an object at a desired level. The haptic interface allows simultaneous control over the maximum force exerted by the manipulator membe...

대표
청구항

[ We claim:] [1.]1. A remote manipulator comprising:a) a manipulable operating member pivotally movable about a pivot axis;b) a manipulator member coupled to the operating member by a linkage, the linkage causing the manipulator member to move in response to movements of the operating member;c) a tunable spring having a variable spring constant, the tunable spring coupled between a connection point spaced apart from the pivot axis on the manipulator member and a mount;d) a force sensor coupled to the operating member, the force sensor producing a signal ...

이 특허를 인용한 특허 피인용횟수: 29

  1. Michael B. Wittig. Actuation device having multiple degrees of freedom of movement and reduced inertia. USP2002016339420.
  2. Gunter D. Niemeyer. Aspects of a control system of a minimally invasive surgical apparatus. USP2002126493608.
  3. Niemeyer, Günter D.. Aspects of a control system of a minimally invasive surgical apparatus. USP2004086772053.
  4. Lapham, John R.. Automation equipment control system. USP2013068473202.
  5. Lapham, John R.. Automation equipment control system. USP2014068761932.
  6. Lapham, John R.. Automation equipment control system. USP2011118050797.
  7. Hennion, Bernard. Force feedback member control method and system. USP2005016847852.
  8. Guy, Rodomista; Andrew, Ziegler; Goodwin, William A.; Clive, Bolton; Massie, Thomas H.; Lohse, R. Michael. Force reflecting haptic interface. USP2005046879315.
  9. Massie, Thomas H.; Goodwin, William A.; Chen, Elaine; Kapoor, Deepak; Cohen, Abbe J.; Itkowitz, Brandon. Force reflecting haptic interface. USP2015038994643.
  10. Massie,Thomas H.; Goodwin,William Alexander; Chen,Elaine; Kapoor,Deepak; Cohen,Abbe J.; Itkowitz,Brandon D.. Force reflecting haptic interface. USP2008087411576.
  11. Rodomista Guy ; Ziegler Andrew ; William A. Goodwin ; Bolton Clive ; Thomas H. Massie ; R. Michael Lohse. Force reflecting haptic interface. USP2002076417638.
  12. Rodomista, Guy; Ziegler, Andrew; Goodwin, William A.; Bolton, Clive; Massie, Thomas H.; Lohse, R. Michael. Force reflecting haptic interface. USP2010057714836.
  13. Nowlin, William C.; Guthart, Gary S.; Younge, Robert G.; Cooper, Thomas G.; Gerbi, Craig; Blumenkranz, Stephen J.; Hoornaert, Dean F.. Grip strength with tactile feedback for robotic surgery. USP2010087778733.
  14. Nowlin, William C.; Guthart, Gary S.; Younge, Robert G.; Cooper, Thomas G.; Gerbi, Craig; Blumenkranz, Steven J.; Hoornaert, Dean F.. Grip strength with tactile feedback for robotic surgery. USP2005046879880.
  15. Nowlin, William C.; Guthart, Gary S.; Younge, Robert G.; Cooper, Thomas G.; Gerbi, Craig; Blumenkranz, Steven J.; Hoornaert, Dean F.. Grip strength with tactile feedback for robotic surgery. USP2003076594552.
  16. Nowlin,William C.; Guthart,Gary S.; Younge,Robert G.; Cooper,Tom G.; Gerbi,Craig; Blumenkranz,Steven J.; Hoornaert,Dean F.. Grip strength with tactile feedback for robotic surgery. USP2008057373219.
  17. Auld, Michael D.. Methods, systems, and devices for control of surgical tools in a robotic surgical system. USP2018029888975.
  18. Auld, Michael D.. Methods, systems, and devices for control of surgical tools in a robotic surgical system. USP20190310238461.
  19. Komatsu, Mayumi; Okazaki, Yasunao. Robot, controlling device and controlling method for robot, and controlling program for robot-controlling device. USP2011098024071.
  20. Cohen, Robert F.; Meents, Mark S.. Systems and methods for sensing hand motion by measuring remote displacement. USP2017069679499.
  21. Nixon, Thomas R.. Tool grip calibration for robotic surgery. USP2018019872737.
  22. Nixon, Tom. Tool grip calibration for robotic surgery. USP2015079085083.
  23. Nixon, Tom. Tool grip calibration for robotic surgery. USP2016049317651.
  24. Nixon, Tom. Tool grip calibration for robotic surgery. USP2013058452447.
  25. Nixon, Tom. Tool grip calibration for robotic surgery. USP2017049623563.
  26. Nixon,Tom. Tool grip calibration for robotic surgery. USP2008067386365.
  27. Kornbluh, Roy D.; Pelrine, Ronald E.; Prahlad, Harsha; Chiba, Seiki; Eckerle, Joseph S.; Chavez, Bryan; Stanford, Scott E.; Low, Thomas. Wave powered generation. USP2009057538445.
  28. Kornbluh, Roy D.; Pelrine, Ronald E.; Prahlad, Harsha; Chiba, Seiki; Eckerle, Joseph S.; Chavez, Bryan; Stanford, Scott E.; Low, Thomas. Wave powered generation. USP2010017649276.
  29. Kornbluh, Roy D.; Pelrine, Ronald E.; Prahlad, Harsha; Chiba, Seiki; Eckerle, Joseph S.; Chavez, Bryan; Stanford, Scott E.; Low, Thomas. Wave powered generation using electroactive polymers. USP2009077557456.