$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Process for fabricating an array of nanowires 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • C25D-011/04
  • C25D-011/08
  • C25D-005/34
  • C25D-005/44
  • C25D-005/48
출원번호 US-0064439 (1998-04-22)
발명자 / 주소
  • Ying Jackie Y.
  • Zhang Zhibo
  • Zhang Lei
  • Dresselhaus Mildred S.
출원인 / 주소
  • Massachusetts Institute of Technology
대리인 / 주소
    Daly, Crowley & Mofford, LLP
인용정보 피인용 횟수 : 181  인용 특허 : 6

초록

An array of nanowires having a relativley constant diameter and techniques and apparatus for fabrication thereof are described. In one embodiment, a technique for melting a material under vacuum and followed by pressure injection of the molten material into the pores of a porous substrate produces c

대표청구항

[ What is claimed is:] [1.]1. A method for providing a substrate for use in the fabrication of a nanowire array comprising:a) preparing an aluminum substrate;b) anodizing the aluminum substrate using an acidic electrolyte solution to provide a porous aluminum oxide film on a surface of said aluminum

이 특허에 인용된 특허 (6)

  1. Miller Albert E. ; Bandyopadhyay Supriyo, Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays.
  2. Watanabe Masao (Sapporo JPX), Method of fabricating nano-size thin wires and devices made of such thin wires.
  3. Paoli Thomas L. (Los Altos CA) Epler John E. (Zurich CHX), Method of fabricating quantum wire semiconductor laser via photo induced evaporation enhancement during in situ epitaxia.
  4. Moskovits Martin (145 Chiltern Hill Road Toronto ; Ontario CAX M6C 3C3 ) Xu Jing M. (Dept. of Electrical & Computer Engineering University of Toronto 10 Kings College Road Toronto ; Ontario CAX M5S 1, Nanoelectric devices.
  5. Ishimori Shigeru (Hamana JA) Otsuka Shinjiro (Hamamatsu JA), Process for forming low-abrasion surface layers on metal objects.
  6. Moskovits Martin (145 Chiltern Hill Road Toronto ; Ontario CAX M5C 3C3), Process for manufacture of quantum dot and quantum wire semiconductors.

이 특허를 인용한 특허 (181)

  1. Suhir,Ephraim, Apparatus for attaching a cooling structure to an integrated circuit.
  2. Kim, Dong-Wook; Jin, Sungho; Yoo, In-Kyung, Article comprising metal oxide nanostructures.
  3. Kim,Dong Wook; Jin,Sungho; Yoo,In Kyung, Article comprising metal oxide nanostructures and method for fabricating such nanostructures.
  4. Sungho Jin, Article comprising small diameter nanowires and method for making the same.
  5. Walter L. Brown ; Sungho Jin ; Wei Zhu, Article comprising vertically nano-interconnected circuit devices and method for making the same.
  6. Tian, Bozhi; Xie, Ping; Kempa, Thomas J.; Lieber, Charles M.; Cohen-Karni, Itzhaq; Qing, Quan; Duan, Xiaojie, Bent nanowires and related probing of species.
  7. Lieber, Charles M.; Tian, Bozhi; Jiang, Xiaocheng, Branched nanoscale wires.
  8. Ahn, Kie Y.; Forbes, Leonard, Buried ground plane for high performance system modules.
  9. Rao,Apparao M.; Chopra,Saurabh, Carbon nanotube based resonant-circuit sensor.
  10. Li,Jun; Meyyappan,Meyya, Carbon nanotube interconnect.
  11. Wyland, Christopher, Carbon nanotube-based conductive connections for integrated circuit devices.
  12. Basceri,Cem; Derderian,Garo J., Circuit constructions.
  13. Fonash,Stephen J.; Nam,Wook Jun; Lee,Youngchul; Chang,Kyuhwan; Hayes,Daniel J.; Kalkan,A. Kaan; Bae,Sanghoon, Deposited thin films and their use in separation and sacrificial layer applications.
  14. Henderson, Eric R.; Nettikadan, Saju R.; Mosher, Curtis L., Device and method of use for detection and characterization of pathogens and biological materials.
  15. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Device selection circuitry constructed with nanotube ribbon technology.
  16. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Device selection circuitry constructed with nanotube technology.
  17. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  18. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  19. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices.
  20. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  21. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  22. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  23. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  24. Lindsey, Norris; Rao, Appajosula Yashodhara; Rao, Appajosula Srinivasa, Electrochemical sensor with nano-wire array.
  25. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  26. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  27. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  28. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory having cell selection circuitry constructed with nanotube technology.
  29. Rueckes, Thomas; Segal, Brent M.; Bertin, Claude L., Electromechanical three-trace junction devices.
  30. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Electromechanical three-trace junction devices.
  31. Rueckes,Thomas; Segal,Brent M.; Bertin,Claude, Electromechanical three-trace junction devices.
  32. Choi, Hyungsoo; Kim, Kyekyoon, Electron emission device incorporating free standing monocrystalline nanowires.
  33. Colby, Steven M., Electron source.
  34. Higuchi,Mitsuru; Negishi,Keiichi; Ayame,Daisuke; Abe,Kazunori; Takeuchi,Shinji, Electronic endoscope for highlighting blood vessel.
  35. Liang, Rong-Chang; Chan-Park, Mary; Tseng, Scott C-J; Wu, Zarng-Arh George; Zang, HongMei, Electrophoretic display.
  36. Liang, Rong Chang; Chan Park, Mary; Tseng, Scott C J; Wu, Zarng Arh George; Zang, HongMei, Electrophoretic display and process for its manufacture.
  37. Liang, Rong Chang; Chan Park, Mary; Tseng, Scott C J; Wu, Zarng Arh George; Zang, HongMei, Electrophoretic display and process for its manufacture.
  38. Liang, Rong-Chang; Chan-Park, Mary; Tseng, Scott C-J; Wu, Zarng-Arh George; Zang, HongMei, Electrophoretic display and process for its manufacture.
  39. Liang, Rong-Chang; Chan-Park, Mary; Tseng, Scott C-J; Wu, Zarng-Arh George; Zang, HongMei, Electrophoretic display and process for its manufacture.
  40. Kroupenkine,Timofei Nikita; Taylor,Joseph Ashley; Weiss,Donald, Electrowetting battery having a nanostructured electrode surface.
  41. Heremans, Joseph Pierre; Thrush, Christopher Mark; Morelli, Donald T., Enhanced thermoelectric power in bismuth nanocomposites.
  42. Henderson,Eric; Mosher,Curtis, Evaluating binding affinities by force stratification and force panning.
  43. Kornilovich,Pavel; Mardilovich,Peter; Stasiak,James; Thirukkovalur,Niranjan, Fabrication and use of superlattice.
  44. Lee, Yun-Hi; Ju, Byeong-Kwon; Jang, Yoon-Taek; Choi, Chang-Hoon, Fabrication method of metallic nanowires.
  45. Brueck, Steven R. J.; Kuznetsova, Yuliya; Neumann, Alexander, Fabrication of enclosed nanochannels using silica nanoparticles.
  46. Brueck, Steven R. J.; Xia, Deying; Kuznetsova, Yuliya; Neumann, Alexander, Fabrication of enclosed nanochannels using silica nanoparticles.
  47. Kornilovich,Pavel; Mardilovich,Peter; Stasiak,James, Fabrication of nano-object array.
  48. Okamura, Yoshimasa; Kohler, Timothy L., Fabrication of nanoscale thermoelectric devices.
  49. Kornilovich,Pavel; Mardilovich,Peter; Peters,Kevin Francis; Stasiak,James, Fabrication of nanowires.
  50. Zhou,Otto Z.; Lu,Jianping; Dong,Changkun; Gao,Bo, Field emission ion source based on nanostructure-containing material.
  51. Choi, Kyung Moon; Jin, Sungho; Kochanski, Gregory Peter; Zhu, Wei, Field emitting device comprising metallized nanostructures and method for making the same.
  52. Yang, Xiaofeng; Komilovich, Pavel, Field-effect-transistor multiplexing/demultiplexing architectures.
  53. Yang,Xiaofeng; Komilovich,Pavel, Field-effect-transistor multiplexing/demultiplexing architectures and methods of forming the same.
  54. Yu, Han-Young; Kim, Ansoon; Yang, Jong-Heon; Baek, In-Bok; Ahn, Chang-Geun; Ah, Chil-Seong; Park, Chan-Woo; Lee, Seongjae; Zyung, Taehyoung, Gas storage medium, gas storage apparatus and method thereof.
  55. Kolodner, Paul Robert; Krupenkine, Thomas Nikita; Lyons, Alan Michael; Pau, Stanley; Taylor, Joseph Ashley; Vyas, Brijesh, Graphitic nanostructured battery.
  56. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  57. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  58. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  59. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  60. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Hybrid circuit having nanotube electromechanical memory.
  61. Zhang, John H., Hybrid photonic and electronic integrated circuits.
  62. Zhang, John H., Hybrid photonic and electronic integrated circuits.
  63. Penner,Reginald Mark; Walter,Erich C.; Favier,Fred, Hydrogen gas sensor.
  64. Kocanda, Martin; Haji-Sheikh, Michael James, Hydrogen sensor.
  65. Dangelo, Carlos; Padmakumar, Bala, In-chip structures and methods for removing heat from integrated circuits.
  66. Bratkovski, Alexandre; Yasseri, Amir A.; Williams, R. Stanley, Independently addressable interdigitated nanowires.
  67. Dangelo, Carlos; Olson, Darin, Integrated circuit micro-cooler having multi-layers of tubes of a CNT array.
  68. Wang, Hong; Liu, Zhimin, Light scattering device having multi-layer micro structure.
  69. Luan, Zhaohua; Fournier, Jay A, Metal-containing nanowires prepared using mesoporous molecular sieves as templates, and their use in smoking articles for removing certain gas phase constituents from tobacco smoke.
  70. Weiner, Anita M.; Wong, Curtis A.; Cheng, Yang-Tse; Balogh, Michael P.; Lukitsch, Michael J., Metallic nanowire and method of making the same.
  71. Weiner, Anita Miriam; Wong, Curtis A.; Cheng, Yang-Tse; Balogh, Michael P.; Lukitsch, Michael J., Metallic nanowire and method of making the same.
  72. Weiner,Anita M.; Wong,Curtis A.; Cheng,Yang Tse; Balogh,Michael P.; Lukitsch,Micheal J., Metallic nanowire and method of making the same.
  73. Ng,Hou Tee; Li,Jun; Meyyappan,Meyya, Metallic nanowire interconnections for integrated circuit fabrication.
  74. Suhir, Ephraim; Xu, Yuan; Zhang, Yi, Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays.
  75. Henderson,Eric; Mosher,Curtis; Huff,Janice, Method and apparatus for molecular analysis in small sample volumes.
  76. Henderson,Eric; Mosher,Curtis; Lynch,Michael P., Method and apparatus for solid state molecular analysis.
  77. Sun,Yi; Wilson,Stephen, Method for dissolving nanostructural materials.
  78. Huang, Ru; Sun, Shuai; Al, Yujie; Fan, Jiewen; Wang, Runsheng; Xu, Xiaoyan, Method for fabricating ultra-fine nanowire.
  79. Simon, Patrice; Taberna, Pierre-Louis; Lebey, Thierry; Cambronne, Jean Pascal; Bley, Vincent; Luan, Quoc Hung; Tarascon, Jean Marie, Method for making an electrically conducting mechanical interconnection member.
  80. Kim, Hae Jin; Lee, Jin Bae, Method for manufacturing manganese oxide nanotube or nanorod by anodic aluminum oxide template.
  81. Asano, Tsuyoshi; Kubo, Takaya; Nishikitani, Yoshinori, Method for manufacturing nano-array electrode and photoelectric conversion device using same.
  82. Miyata, Hirokatsu; Otto, Albrecht; Kuriyama, Akira; Ogawa, Miki; Okura, Hiroshi; Fukutani, Kazuhiko; Den, Tohru, Method for producing columnar structured material.
  83. Wang,Hong; Liu,Zhimin, Method of fabricating nano-structured surface and configuration of surface enhanced light scattering probe.
  84. Kornilovich,Pavel; Mardilovich,Peter; Ramamoorthi,Sriram, Method of forming multilayer film.
  85. Akbar,Sheikh A.; Yoo,Sehoon; Sandhage,Kenneth H., Method of forming nanostructures on ceramics.
  86. Fukutani, Kazuhiko; Den, Tohru, Method of manufacturing porous body.
  87. Tatsuya Iwasaki JP; Tohru Den JP, Method of producing structure having narrow pores by anodizing.
  88. Chen, Yong; Williams, R. Stanley; Ohlberg, Douglas A. A., Method to grow self-assembled epitaxial nanowires.
  89. Freer, Erik; Hamilton, James M.; Stumbo, David P.; Komiya, Kenji; Shibata, Akihide, Methods and systems for electric field deposition of nanowires and other devices.
  90. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  91. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  92. Dutta, Biprodas; Pegg, Ian L.; Mohr, Robert K.; Battogtokh, Jugdersuren, Methods of drawing high density nanowire arrays in a glassy matrix.
  93. Dutta, Biprodas; Pegg, Ian L.; Annamalai, Sezhian; Bhatta, Rudra P.; Battogtokh, Jugdersuren, Methods of drawing wire arrays.
  94. Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong, Methods of fabricating nanostructures and nanowires and devices fabricated therefrom.
  95. Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong, Methods of fabricating nanostructures and nanowires and devices fabricated therefrom.
  96. Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong, Methods of fabricating nanostructures and nanowires and devices fabricated therefrom.
  97. Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong, Methods of fabricating nanostructures and nanowires and devices fabricated therefrom.
  98. Majumdar,Arun; Shakouri,Ali; Sands,Timothy D.; Yang,Peidong; Mao,Samuel S.; Russo,Richard E.; Feick,Henning; Weber,Eicke R.; Kind,Hannes; Huang,Michael; Yan,Haoquan; Wu,Yiying; Fan,Rong, Methods of fabricating nanostructures and nanowires and devices fabricated therefrom.
  99. Zhang, Zhibo; Misra, Veena; Bedair, Salah M. A.; Ozturk, Mehmet, Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates.
  100. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  101. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  102. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  103. Rueckes, Thomas; Segal, Brent M., Methods of nanotube films and articles.
  104. Rueckes,Thomas; Segal,Brent M., Methods of nanotube films and articles.
  105. Rueckes,Thomas; Segal,Brent M., Methods of nanotubes films and articles.
  106. Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  107. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  108. Wang, Hong; Lin, Zhimin, Micro structure for sensing trace chemicals.
  109. Yang, Xiaofeng; Ramamoorthi, Sriram; Kawamoto, Galen H., Misalignment-tolerant methods for fabricating multiplexing/demultiplexing architectures.
  110. Yang, Xiaofeng; Ramamoorthi, Sriram; Kawamoto, Galen H., Misalignment-tolerant multiplexing/demultiplexing architectures.
  111. Wang, Hong; Liu, Zhimin, Multi-layer micro structure for sensing substance.
  112. Wang, Hong, Multi-layer variable micro structure for sensing substance.
  113. D'Urso, Brian R.; Simpson, John T., Multi-tipped optical component.
  114. D'urso, Brian R; Simpson, John T, Multi-tipped optical component.
  115. Kornilovich, Paval; Mardilovich, Peter; Ramamoorthi, Sriram, Multilayer film with stack of nanometer-scale thicknesses.
  116. Chidambarrao, Dureseti; Liu, Xiao Hu; Sekaric, Lidija, Multiple Orientation Nanowires with Gate Stack Sensors.
  117. Chidambarrao, Dureseti; Liu, Xiao Hu; Sekaric, Lidija, Multiple orientation nanowires with gate stack sensors.
  118. Chidambarrao, Dureseti; Liu, Xiao Hu; Sekaric, Lidija, Multiple orientation nanowires with gate stack stressors.
  119. Tuominen,Mark; Schotter,Joerg; Thurn Albrecht,Thomas; Russell,Thomas P., Nanocylinder arrays.
  120. Li, Jun; Meyyappan, Meyya; Dangelo, Carlos, Nanoengineered thermal materials based on carbon nanotube array composites.
  121. Li,Jun; Meyyappan,Meyya, Nanoengineered thermal materials based on carbon nanotube array composites.
  122. Doumanidis, Charalabos C.; Ando, Teiichi; Chen, Julie; Rebholz, Claus G., Nanoheater elements, systems and methods of use thereof.
  123. Babic,Davorin; Baxley,John M.; Browne,Paul D., Nanomachined and micromachined electrodes for electrochemical devices.
  124. Lieber,Charles M.; Duan,Xiangfeng; Huang,Yu; Agarwal,Ritesh, Nanoscale coherent optical components.
  125. Henderson,Eric; Mosher,Curtis, Nanoscale molecular arrayer.
  126. Chen Yong ; Williams R. Stanley, Nanoscale patterning for the formation of extensive wires.
  127. Lieber, Charles M.; Patolsky, Fernando; Zheng, Gengfeng, Nanoscale sensors.
  128. Lieber, Charles M.; Wu, Yue; Yan, Hao, Nanoscale wire-based data storage.
  129. Lieber,Charles M.; Duan,Xiangfeng; Cui,Yi; Huang,Yu; Gudiksen,Mark; Lauhon,Lincoln J.; Wang,Jianfang; Park,Hongkun; Wei,Qingqiao; Liang,Wenjie; Smith,David C.; Wang,Deli; Zhong,Zhaohui, Nanoscale wires and related devices.
  130. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  131. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  132. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenji, Nanosensors.
  133. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  134. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  135. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  136. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  137. Tsakalakos, Loucas; Korevaar, Bastiaan A.; Balch, Joleyn E.; Fronheiser, Jody A.; Corderman, Reed R.; Sharifi, Fred; Ramaswamy, Vidya, Nanostructure arrays and methods for forming same.
  138. Haight, Richard A.; Rossnagel, Stephen M., Nanostructure electrode for pseudocapacitive energy storage.
  139. Iwasaki, Tatsuya; Den, Tohru, Nanostructure, electron emitting device, carbon nanotube device, and method of producing the same.
  140. Den,Tohru; Fukutani,Kazuhiko, Nanostructure, electronic device and method of manufacturing the same.
  141. Samuelson, Lars Ivar; Ohlsson, Bjorn Jonas, Nanostructures and methods for manufacturing the same.
  142. Choi,Hyungsoo, Nanostructures including a metal.
  143. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  144. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  145. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  146. Meyer,Neal W.; Ellenson,James E., Nanowire Filament.
  147. Chidambarrao, Dureseti; Liu, Xiao H.; Sekaric, Lidija, Nanowire devices for enhancing mobility through stress engineering.
  148. Dutta, Biprodas, Nanowire electronic devices and method for producing the same.
  149. Dutta, Biprodas, Nanowire electronic devices and method for producing the same.
  150. Meyer, Neal W.; Ellenson, James E., Nanowire filament.
  151. Lu, Wei; Xiang, Jie; Wu, Yue; Timko, Brian P.; Yan, Hao; Lieber, Charles M., Nanowire heterostructures.
  152. May, Charles Elijah; Singh, Vijay Pal; Rajaputra, Suresh K S, Nanowires, nanowire junctions, and methods of making the same.
  153. Wang, Hong, Optical sensing system based on a micro-array structure.
  154. Zhang,Zhibo; Misra,Veena; Bedair,Salah M. A.; Ozturk,Mehmet, Optoelectonic devices having arrays of quantum-dot compound semiconductor superlattices therein.
  155. Zhang, Zhibo; Misra, Veena; Bedair, Salah M. A.; Ozturk, Mehmet, Optoelectronic devices having arrays of quantum-dot compound semiconductor superlattices therein.
  156. Liang, Rong-Chang; Chan-Park, Mary; Tseng, Scott C-J; Wu, Zarng-Arh George; Zang, HongMei; Wang, Xiaojia, Process for preparing a display panel.
  157. Lu,Yunfeng; Wang,Donghai, Process for the preparation of metal-containing nanostructured films.
  158. Yoo, Kyung-Hwa; Kim, Sung In; Lee, Jae Hak; Chang, Young Wook, Resistive random access memory device and method of same.
  159. Hodes, Marc Scott; Kolodner, Paul Robert; Kroupenkine, Timofei Nikita; Lyons, Alan Michael; Mandich, Mary Louise; Taylor, Joseph Ashley; Weiss, Donald, Reversibly-activated nanostructured battery.
  160. Sekaric, Lidija; Chidambarrao, Dureseti; Liu, Xiao H., Semiconductor nanowire with built-in stress.
  161. Sekaric, Lidija; Barwicz, Tymon; Chidambarrao, Dureseti, Semiconductor nanowires having mobility-optimized orientations.
  162. Xiao, Zhili, Sensors and devices containing ultra-small nanowire arrays.
  163. Xiao, Zhili, Sensors and devices containing ultra-small nanowire arrays.
  164. Wada, Hitoshi, Sliding member and sliding bearing.
  165. Alison Baski ; Don Kendall, Strongly textured atomic ridge and dot fabrication.
  166. Chidambarrao, Dureseti; Sekaric, Lidija, Structurally stabilized semiconductor nanowire.
  167. Iwasaki, Tatsuya; Den, Tohru, Structure having narrow pores.
  168. Heath,James R.; Petroff,Pierre M.; Melosh,Nicholas A., Superlattice nanopatterning of wires and complex patterns.
  169. Dangelo, Carlos, System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler.
  170. Dangelo,Carlos; Meyyappan,Meyya; Li,Jun, System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler.
  171. Buretea, Mihai A.; Chen, Jian; Chow, Calvin Y. H.; Niu, Chunming; Pan, Yaoling; Parce, J. Wallace; Romano, Linda T.; Stumbo, David P., System and process for producing nanowire composites and electronic substrates therefrom.
  172. Buretea,Mihai A.; Chen,Jian; Chow,Calvin Y. H.; Niu,Chunming; Pan,Yaoling; Parce,J. Wallace; Romano,Linda T.; Stumbo,David P., System and process for producing nanowire composites and electronic substrates therefrom.
  173. Buretea,Mihai; Chen,Jian; Chow,Calvin; Niu,Chunming; Pan,Yaoling; Parce,J. Wallace; Romano,Linda T.; Stumbo,David, System and process for producing nanowire composites and electronic substrates therefrom.
  174. Siochi,Emilie J.; Abdel Fattah,Tarek, Templated growth of carbon nanotubes.
  175. Simpson, John T., Thermal history-based etching.
  176. Simpson, John T., Thermal history-based etching.
  177. Fleurial,Jean Pierre; Ryan,Margaret A.; Borshchevsky,Alexander; Herman,Jennifer, Thermoelectric device with multiple, nanometer scale, elements.
  178. Rabin,Oded; Herz,Paul R.; Dresselhaus,Mildred S.; Akinwande,Akintunde I.; Lin,Yu Ming, Thick porous anodic alumina films and nanowire arrays grown on a solid substrate.
  179. Fonash,Stephen J.; Li,Handong; Lee,Youngchul; Cuiffi,Joseph D.; Hayes,Daniel J., Use of sacrificial layers in the manufacture of high performance systems on tailored substrates.
  180. Dangelo, Carlos; Spitzer, Jason, Vapor chamber heat sink having a carbon nanotube fluid interface.
  181. Lu, Yicheng; Muthukumar, Sriram; Emanetoglu, Nuri William, Zinc oxide nanotip and fabricating method thereof.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로