$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Nanowire arrays

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-029/15
출원번호 US-0064242 (1998-04-22)
발명자 / 주소
  • Jackie Y. Ying
  • Zhibo Zhang
  • Lei Zhang
  • Mildred S. Dresselhaus
출원인 / 주소
  • Massachusetts Institute of Technology
대리인 / 주소
    Daly, Crowley & Mofford, LLP
인용정보 피인용 횟수 : 147  인용 특허 : 5

초록

An array of nanowires having a relatively constant diameter and techniques and apparatus for fabrication thereof are described. In one embodiment, a technique for melting a material under vacuum and followed by pressure injection of the molten material into the pores of a porous substrate produces c

대표청구항

1. An nanowire array comprising:a substrate having a plurality of non-interconnected pores each of the plurality of pores having a mean pore diameter which does not vary by more than 100% along the length of the pore; and a material continuously filled in each of the plurality of pores of the substr

이 특허에 인용된 특허 (5)

  1. Watanabe Masao (Sapporo JPX), Method of fabricating nano-size thin wires and devices made of such thin wires.
  2. Paoli Thomas L. (Los Altos CA) Epler John E. (Zurich CHX), Method of fabricating quantum wire semiconductor laser via photo induced evaporation enhancement during in situ epitaxia.
  3. Tonucci Ronald J. (Temple Hills MD) Justus Brian L. (Springfield VA), Nanochannel glass matrix used in making mesoscopic structures.
  4. Moskovits Martin (145 Chiltern Hill Road Toronto ; Ontario CAX M6C 3C3 ) Xu Jing M. (Dept. of Electrical & Computer Engineering University of Toronto 10 Kings College Road Toronto ; Ontario CAX M5S 1, Nanoelectric devices.
  5. Moskovits Martin (145 Chiltern Hill Road Toronto ; Ontario CAX M5C 3C3), Process for manufacture of quantum dot and quantum wire semiconductors.

이 특허를 인용한 특허 (147)

  1. Nugent, Alex, Adaptive neural network utilizing nanotechnology-based components.
  2. Suhir,Ephraim, Apparatus for attaching a cooling structure to an integrated circuit.
  3. Nugent,Alex, Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks.
  4. Tian, Bozhi; Xie, Ping; Kempa, Thomas J.; Lieber, Charles M.; Cohen-Karni, Itzhaq; Qing, Quan; Duan, Xiaojie, Bent nanowires and related probing of species.
  5. Lieber, Charles M.; Tian, Bozhi; Jiang, Xiaocheng, Branched nanoscale wires.
  6. Rao,Apparao M.; Chopra,Saurabh, Carbon nanotube based resonant-circuit sensor.
  7. Li,Jun; Meyyappan,Meyya, Carbon nanotube interconnect.
  8. Ku,Anthony Yu Chung; Loureiro,Sergio Paulo Martins; Taylor,Seth Thomas, Ceramic structures and methods of making them.
  9. Englund, Dirk; Mower, Jacob; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K., Compactly-integrated optical detectors and associated systems and methods.
  10. Tombler, Thomas W., Concentric gate nanotube transistor devices.
  11. Franklin, Aaron D.; Maschmann, Matthew R.; Fisher, Timothy S.; Sands, Timothy D., Contact metallization of carbon nanotubes.
  12. Monty,Greg; Ng,Kwok; Yang,Mohshi; Finh,Richard, Continuous-range hydrogen sensors.
  13. Pidria,Marco Federico; Grasso,Valentina; Faraldi,Paolo; Lambertini,Vito, Device for measuring the quantity of solid particles in a gas medium.
  14. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices.
  15. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  16. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  17. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  18. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  19. Claussen, Jonathan Clay; Franklin, Aaron D.; Fisher, Timothy S.; Porterfield, D. Marshall, Electrochemical biosensor.
  20. Choi, Hyungsoo; Kim, Kyekyoon, Electron emission device incorporating free standing monocrystalline nanowires.
  21. Heremans, Joseph Pierre; Thrush, Christopher Mark; Morelli, Donald T., Enhanced thermoelectric power in bismuth nanocomposites.
  22. Kornilovich,Pavel; Mardilovich,Peter; Stasiak,James; Thirukkovalur,Niranjan, Fabrication and use of superlattice.
  23. Brueck, Steven R. J.; Kuznetsova, Yuliya; Neumann, Alexander, Fabrication of enclosed nanochannels using silica nanoparticles.
  24. Brueck, Steven R. J.; Xia, Deying; Kuznetsova, Yuliya; Neumann, Alexander, Fabrication of enclosed nanochannels using silica nanoparticles.
  25. Kornilovich,Pavel; Mardilovich,Peter; Stasiak,James, Fabrication of nano-object array.
  26. Okamura, Yoshimasa; Kohler, Timothy L., Fabrication of nanoscale thermoelectric devices.
  27. Kornilovich,Pavel; Mardilovich,Peter; Peters,Kevin Francis; Stasiak,James, Fabrication of nanowires.
  28. Franklin, Aaron D.; Sands, Timothy D.; Fisher, Timothy S.; Janes, David B., Field effect transistor fabrication from carbon nanotubes.
  29. Zhou,Otto Z.; Lu,Jianping; Dong,Changkun; Gao,Bo, Field emission ion source based on nanostructure-containing material.
  30. Yang, Xiaofeng; Komilovich, Pavel, Field-effect-transistor multiplexing/demultiplexing architectures.
  31. Yang,Xiaofeng; Komilovich,Pavel, Field-effect-transistor multiplexing/demultiplexing architectures and methods of forming the same.
  32. Monty, Greg; Ng, Kwok; Yang, Mohshi, Formation of metal nanowires for use as variable-range hydrogen sensors.
  33. Monty,Greg; Ng,Kwok; Yang,Mohshi, Formation of metal nanowires for use as variable-range hydrogen sensors.
  34. Monty,Greg; Ng,Kwok; Yang,Mohshi, Formation of metal nanowires for use as variable-range hydrogen sensors.
  35. Nugent, Alex, Fractal memory and computational methods and systems based on nanotechnology.
  36. Nugent,Alex, Fractal memory and computational methods and systems based on nanotechnology.
  37. Nugent, Alex, Hierarchical temporal memory methods and systems.
  38. Nugent, Alex, High density synapse chip using nanoparticles.
  39. Pan, David H.; Fan, Fa-Gung; Swift, Joseph A.; Hays, Dan A.; Zona, Michael F., High performance materials and processes for manufacture of nanostructures for use in electron emitter ion and direct charging devices.
  40. Starkovich, John A.; Silverman, Edward M.; Tice, Jesse B.; Peng, Hsiao-Hu; Barako, Michael T.; Goodson, Kenneth E., High-conductivity bonding of metal nanowire arrays.
  41. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  42. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  43. Penner, Reginald Mark; Walter, Erich C.; Favier, Fred, Hydrogen gas sensor.
  44. Penner,Reginald Mark; Walter,Erich C.; Favier,Fred, Hydrogen gas sensor.
  45. Dangelo, Carlos; Padmakumar, Bala, In-chip structures and methods for removing heat from integrated circuits.
  46. Dangelo, Carlos; Olson, Darin, Integrated circuit micro-cooler having multi-layers of tubes of a CNT array.
  47. Scherer, Axel; Doll, Theodore; Fuenzalida, Victor, Intermediate structures in porous substrates in which electrical and optical microdevices are fabricated and intermediate structures formed by the same.
  48. Gu, Tao; Omstead, Thomas R.; Wang, Ning; Dong, Yi; Li, Yi-Qun, Low platinum fuel cells, catalysts, and method for preparing the same.
  49. Nibarger,John P., Magnetic recorder having carbon nanotubes embedded in anodic alumina for emitting electron beams to perform heat-assisted magnetic recording.
  50. Desai, Tejal; Daniels, R. Hugh; Sahi, Vijendra, Medical device applications of nanostructured surfaces.
  51. Dubrow, Robert S.; Bock, Lawrence A.; Daniels, R. Hugh; Hardev, Veeral D.; Niu, Chunming; Sahi, Vijendra, Medical device applications of nanostructured surfaces.
  52. Dubrow, Robert S.; Bock, Lawrence A.; Daniels, R. Hugh; Hardev, Veeral D.; Niu, Chunming; Sahi, Vijendra, Medical device applications of nanostructured surfaces.
  53. Nugent, Alex, Memristive neural processor utilizing anti-hebbian and hebbian technology.
  54. Luan, Zhaohua; Fournier, Jay A, Metal-containing nanowires prepared using mesoporous molecular sieves as templates, and their use in smoking articles for removing certain gas phase constituents from tobacco smoke.
  55. Ng,Hou Tee; Li,Jun; Meyyappan,Meyya, Metallic nanowire interconnections for integrated circuit fabrication.
  56. Suhir, Ephraim; Xu, Yuan; Zhang, Yi, Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays.
  57. Ng, Kwok; Monty, Greg; Li, Yunjun; Yaniv, Zvi; Soundarrajan, Prabhu, Method and apparatus for sensing hydrogen gas.
  58. Ng,Kwok; Monty,Greg; Li,Yunjun; Yaniv,Zvi; Soundarrajan,Prabhu, Method and apparatus for sensing hydrogen gas.
  59. Nugent, Alex, Method and system for a hierarchical temporal memory utilizing a router hierarchy and hebbian and anti-hebbian learning.
  60. Kim, Hae Jin; Lee, Jin Bae, Method for manufacturing manganese oxide nanotube or nanorod by anodic aluminum oxide template.
  61. Miyata, Hirokatsu; Otto, Albrecht; Kuriyama, Akira; Ogawa, Miki; Okura, Hiroshi; Fukutani, Kazuhiko; Den, Tohru, Method for producing columnar structured material.
  62. Kuekes,Philip J.; Kamins,Theodore I., Method for selectively controlling lengths of nanowires.
  63. Bhansali,Shekhar; Aravamudhan,Shyam; Luongo,Kevin; Kedia,Sunny, Method for the assembly of nanowire interconnects.
  64. Mardilovich, Peter; Fuller, Anthony M.; Wei, Qingqiao, Method of forming a micro-structure.
  65. Mardilovich, Peter; Wei, Qingqiao; Fuller, Anthony M., Method of forming a nano-structure.
  66. Mardilovich, Peter; Wei, Qingqiao; Fuller, Anthony M., Method of forming a nano-structure.
  67. Kornilovich,Pavel; Mardilovich,Peter; Ramamoorthi,Sriram, Method of forming multilayer film.
  68. Akbar,Sheikh A.; Yoo,Sehoon; Sandhage,Kenneth H., Method of forming nanostructures on ceramics.
  69. Fukutani, Kazuhiko; Den, Tohru, Method of manufacturing porous body.
  70. Choi, Seong Jae; Seol, Kwang Soo; Choi, Jae Young; Yi, Dong Kee; Yoon, Seon Mi, Method of preparing patterned carbon nanotube array and patterned carbon nanotube array prepared thereby.
  71. Dehon, Andre; Lieber, Charles M.; Savage, John E.; Rachlin, Eric, Method providing radial addressing of nanowires.
  72. Nugent, Alex, Methodology for the configuration and repair of unreliable switching elements.
  73. Freer, Erik; Hamilton, James M.; Stumbo, David P.; Komiya, Kenji; Shibata, Akihide, Methods and systems for electric field deposition of nanowires and other devices.
  74. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  75. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  76. Zhang, Zhibo; Misra, Veena; Bedair, Salah M. A.; Ozturk, Mehmet, Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates.
  77. Bakajin,Olgica; Noy,Aleksandr, Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium.
  78. Yang, Xiaofeng; Ramamoorthi, Sriram; Kawamoto, Galen H., Misalignment-tolerant multiplexing/demultiplexing architectures.
  79. Yaniv, Zvi; Schropp, Jr., Donald R., Modulation of step function phenomena by varying nanoparticle size.
  80. Kornilovich, Paval; Mardilovich, Peter; Ramamoorthi, Sriram, Multilayer film with stack of nanometer-scale thicknesses.
  81. Nugent, Alex, Multilayer training in a physical neural network formed utilizing nanotechnology.
  82. Choi, Byoung-lyong; Lee, Eun-kyung, Nano wires and method of manufacturing the same.
  83. Li, Jong-Lih; Kuan, Chieh-Hsiung, Nano-hole array in conductor element for improving the contact conductance.
  84. Mardilovich, Peter; Wei, Qingqiao; Milonova, Irina Nikolaevna; Fuller, Anthony M., Nano-structure and method of making the same.
  85. Iwasaki, Tatsuya; Den, Tohru, Nano-structures, process for preparing nano-structures and devices.
  86. Tuominen, Mark; Schotter, Joerg; Thurn Albrecht, Thomas; Russell, Thomas P., Nanocylinder arrays.
  87. Li, Jun; Meyyappan, Meyya; Dangelo, Carlos, Nanoengineered thermal materials based on carbon nanotube array composites.
  88. Li,Jun; Meyyappan,Meyya, Nanoengineered thermal materials based on carbon nanotube array composites.
  89. Dubrow, Robert; Daniels, Robert Hugh, Nanofiber surfaces for use in enhanced surface area applications.
  90. Doumanidis, Charalabos C.; Ando, Teiichi; Chen, Julie; Rebholz, Claus G., Nanoheater elements, systems and methods of use thereof.
  91. Lieber,Charles M.; Duan,Xiangfeng; Huang,Yu; Agarwal,Ritesh, Nanoscale coherent optical components.
  92. Lieber, Charles M.; Patolsky, Fernando; Zheng, Gengfeng, Nanoscale sensors.
  93. Lieber, Charles M.; Wu, Yue; Yan, Hao, Nanoscale wire-based data storage.
  94. Lieber,Charles M.; Duan,Xiangfeng; Cui,Yi; Huang,Yu; Gudiksen,Mark; Lauhon,Lincoln J.; Wang,Jianfang; Park,Hongkun; Wei,Qingqiao; Liang,Wenjie; Smith,David C.; Wang,Deli; Zhong,Zhaohui, Nanoscale wires and related devices.
  95. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  96. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  97. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenji, Nanosensors.
  98. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  99. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  100. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  101. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  102. Tsakalakos, Loucas; Korevaar, Bastiaan A.; Balch, Joleyn E.; Fronheiser, Jody A.; Corderman, Reed R.; Sharifi, Fred; Ramaswamy, Vidya, Nanostructure arrays and methods for forming same.
  103. Den,Tohru; Fukutani,Kazuhiko, Nanostructure, electronic device and method of manufacturing the same.
  104. Daniels, R. Hugh; Li, Esther; Rogers, Erica J., Nanostructure-enhanced platelet binding and hemostatic structures.
  105. Choi,Hyungsoo, Nanostructures including a metal.
  106. Nugent,Alex, Nanotechnology neural network methods and systems.
  107. Meyer,Neal W.; Ellenson,James E., Nanowire Filament.
  108. Meyer, Neal W.; Ellenson, James E., Nanowire filament.
  109. Lu, Wei; Xiang, Jie; Wu, Yue; Timko, Brian P.; Yan, Hao; Lieber, Charles M., Nanowire heterostructures.
  110. Berggren, Karl K.; Hu, Xiaolong; Masciarelli, Daniele, Nanowire-based detector.
  111. Zhang,Zhibo; Misra,Veena; Bedair,Salah M. A.; Ozturk,Mehmet, Optoelectonic devices having arrays of quantum-dot compound semiconductor superlattices therein.
  112. Zhang, Zhibo; Misra, Veena; Bedair, Salah M. A.; Ozturk, Mehmet, Optoelectronic devices having arrays of quantum-dot compound semiconductor superlattices therein.
  113. Nugent,Alex, Pattern recognition utilizing a nanotechnology-based neural network.
  114. Nugent,Alex, Physical neural network liquid state machine utilizing nanotechnology.
  115. Nugent,Alex, Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream.
  116. Dubrow, Robert S.; Niu, Chunming, Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production.
  117. Nomura, Shintaro; Itoh, Hironori, Process for producing nanoparticle or nanostructure with use of nanoporous material.
  118. Daniels, R. Hugh; Dubrow, Robert S.; Enzerink, Robert; Li, Esther; Sahi, Vijendra; Goldman, Jay L.; Parce, J. Wallace, Resorbable nanoenhanced hemostatic structures and bandage materials.
  119. Xiao, Li; Zhang, Jingyan; Zhong, Huicai, Self-assembly process for memory array.
  120. Kawashima, Takahiro; Saitoh, Tohru, Semiconductor nanowire and its manufacturing method.
  121. Gole, James L.; Stout, John D.; White, Mark G., Silicon based nanospheres and nanowires.
  122. Den, Toru; Yasui, Nobuhiro; Saito, Tatsuya, Structure having pores and its manufacturing method.
  123. Dubrow, Robert S., Structures, systems and methods for joining articles and materials and uses therefor.
  124. Dubrow,Robert, Structures, systems and methods for joining articles and materials and uses therefor.
  125. Dubrow,Robert, Structures, systems and methods for joining articles and materials and uses therefor.
  126. Dubrow,Robert, Structures, systems and methods for joining articles and materials and uses therefor.
  127. Dubrow, Robert, Super-hydrophobic surfaces, methods of their construction and uses therefor.
  128. Heath,James R.; Petroff,Pierre M.; Melosh,Nicholas A., Superlattice nanopatterning of wires and complex patterns.
  129. Dangelo, Carlos, System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler.
  130. Dangelo,Carlos; Meyyappan,Meyya; Li,Jun, System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler.
  131. Buretea, Mihai A.; Chen, Jian; Chow, Calvin Y. H.; Niu, Chunming; Pan, Yaoling; Parce, J. Wallace; Romano, Linda T.; Stumbo, David P., System and process for producing nanowire composites and electronic substrates therefrom.
  132. Buretea,Mihai A.; Chen,Jian; Chow,Calvin Y. H.; Niu,Chunming; Pan,Yaoling; Parce,J. Wallace; Romano,Linda T.; Stumbo,David P., System and process for producing nanowire composites and electronic substrates therefrom.
  133. Buretea,Mihai; Chen,Jian; Chow,Calvin; Niu,Chunming; Pan,Yaoling; Parce,J. Wallace; Romano,Linda T.; Stumbo,David, System and process for producing nanowire composites and electronic substrates therefrom.
  134. Siochi,Emilie J.; Abdel Fattah,Tarek, Templated growth of carbon nanotubes.
  135. Nugent,Alex, Temporal summation device utilizing nanotechnology.
  136. Fleurial,Jean Pierre; Ryan,Margaret A.; Borshchevsky,Alexander; Herman,Jennifer, Thermoelectric device with multiple, nanometer scale, elements.
  137. Rabin,Oded; Herz,Paul R.; Dresselhaus,Mildred S.; Akinwande,Akintunde I.; Lin,Yu Ming, Thick porous anodic alumina films and nanowire arrays grown on a solid substrate.
  138. Nugent,Alex, Training of a physical neural network.
  139. Nugent,Alex, Universal logic gate utilizing nanotechnology.
  140. Nugent,Alex, Utilized nanotechnology apparatus using a neutral network, a solution and a connection gap.
  141. Dangelo, Carlos; Spitzer, Jason, Vapor chamber heat sink having a carbon nanotube fluid interface.
  142. Nugent,Alex, Variable resistor apparatus formed utilizing nanotechnology.
  143. Maschmann, Matthew Ralph; Fisher, Timothy Scott; Sands, Timothy; Bashir, Rashid, Vertical carbon nanotube device in nanoporous templates.
  144. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
  145. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
  146. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
  147. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트