검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
국가/구분 | United States(US) Patent 등록 |
---|---|
국제특허분류(IPC7판) | G06F-015/18 G06G-007/00 |
미국특허분류(USC) | 706/027; 706/039; 706/004 |
출원번호 | US-0361776 (1999-07-26) |
발명자 / 주소 | |
출원인 / 주소 | |
대리인 / 주소 |
|
인용정보 | 피인용 횟수 : 16 인용 특허 : 15 |
A cortronic neural network defines connections between neurons in a number of regions using target lists, which identify the output connections of each neuron and the connection strength. Neurons are preferably sparsely interconnected between regions. Training of connection weights employs a three stage process, which involves computation of the contribution to the input intensity of each neuron by every currently active neuron, a competition process that determines the next set of active neurons based on their current input intensity, and a weight adjus...
1. A distributed artificial neural network system, comprising:a plurality of distributed computers, each distributed computer storing in memory, at least one region of an artificial neural network, each region containing a plurality of the neurons, each neuron associated with a list of target neurons to which the neuron has an output connection, the output connection having a connection weight, and wherein for at least one region on a distributed computer, the neurons in the region being connected to substantially less than all of the neurons in another ...