$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Methods for processing security documents 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G06N-007/00
출원번호 US-0729009 (2000-12-04)
발명자 / 주소
  • Michael A. Ehrhart
  • Robert M. Hussey
  • Todd A. Dueker
  • Cayetano Sanchez, III
  • Walter Szrek
  • John C. Abraitis
  • Claude Lambert CA
  • Francois Gougeon CA
  • Robert Boulay CA
  • Denis Mondou CA
출원인 / 주소
  • Hand Held Products, Inc.
대리인 / 주소
    Wall Marjama & Bilinski LLP
인용정보 피인용 횟수 : 125  인용 특허 : 14

초록

In one method according to the invention, a security document of an undetermined size within a range of sizes is processed by capturing images corresponding to a topside and bottomside thereof sufficient to encompass the largest possible sized document and then searching through the captured image d

대표청구항

1. A method for determining authenticity of a lottery game ticket having at least one play area including scratch-off material defining outer and indicia icon surfaces, said method comprising the steps of:incorporating a light sensitive additive into said lottery game ticket, said light sensitive ad

이 특허에 인용된 특허 (14)

  1. Ehrhart Michael A. ; Hussey Robert M. ; Dueker Todd A. ; Sanchez ; III Cayetano ; Szrek Walter ; Abraitis John C., Apparatuses for processing security documents.
  2. Kropp Jorg-Reinhardt,DEX, Device for spacing at least one lens from an optoelectronic component.
  3. Irwin ; Jr. Kenneth E. (Alpharetta GA) Streeter Gary R. (Andover MA) Daigle Steven J. (Sunset LA), Electronic verification machine for validating a medium having conductive material printed thereon.
  4. Brettle Jack (Greens Norton GB2) Trundle Clive (Silverstone GB2), Irreversible photochromic markings.
  5. Dueker Todd A. ; Ehrhart Michael A. ; Hussey Robert M., Lottery game ticket processing apparatus.
  6. Smits Paul (Kingston CAX) Rosenfeld Aron M. (Kingston KY CAX) DeFerrari Howard F. (Louisville KY), Method of making tamper-evident structures.
  7. Lawandy Nabil M ; Driscoll Timothy J, Optically-based methods and apparatus for performing document authentication.
  8. Christensen Michael L., Photoelectric imaging device photosensor array alignment apparatus and method.
  9. Trotta Frank (Maplewood NJ) Feldstein George (Cuesskill NJ), Promotional scanning and validating device.
  10. Kanaya Shinichi (Tokyo JPX) Tanaka Koji (Yokohama JPX) Sanbe Shingo (Yokohama JPX) Osada Shinichi (Tokyo JPX) Shiotsuki Seiki (Yokohama JPX), Recorder motor with attached encoder and cover.
  11. Rua ; Jr. Louis (Plainsboro NJ) Tararuj Christopher (Trenton NJ) Martin Stephen (Jamesburg NJ), Recyclable instant scratch-off lottery ticket with improved security to prevent unauthorized detection of lottery indici.
  12. Lawandy Nabil M ; Moon John, Scratch card, and method and apparatus for validation of the same.
  13. Ehrhart Michael A. ; Hussey Robert M. ; Dueker Todd A. ; Sanchez ; III Cayetano ; Szrek Walter ; Abraitis John C. ; Lambert Claude,CAX ; Gougeon Francois,CAX ; Boulay Robert,CAX ; Mondou Denis,CAX, Security document voiding system.
  14. Sultan Hashem, Type of instant scratch-off lottery games.

이 특허를 인용한 특허 (125)

  1. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  2. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  3. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  4. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  5. Wang, Ynjiun P., Apparatus having hybrid monochrome and color image sensor array.
  6. Brabaw,Darren R., Automated bar code label canceller, and method of cancelling bar codes.
  7. Fazzano, Nicholas G., Automated ticket cancellation device and process for canceling uniquely numbered tickets.
  8. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system.
  9. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system.
  10. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations.
  11. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations.
  12. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Mikhail; Zhu, Xiaoxun, Automatic digital video image capture and processing system supporting image-processing based code symbol reading during a pass-through mode of system operation at a retail point of sale (POS) station.
  13. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatic digital video-imaging based code symbol reading system employing illumination and imaging subsystems controlled within a control loop maintained as long as a code symbol has not been successfully read and the object is detected in the field of view of the system.
  14. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatic digital-imaging based bar code symbol reading system supporting a pass-through mode of system operation using automatic object direction detection and illumination control, and video image capture and processing techniques.
  15. Kotlarsky,Anatoly; Au,Ka Man; Veksland,Michael; Zhu,Xiaoxun; Meagher,Mark; Good,Timothy; Hou,Richard; Hu,Daniel, Automatic digital-imaging based bar code symbol reading system supporting pass-through and presentation modes of system operation using automatic object direction detection and illumination control, and video image capture and processing techniques.
  16. Kotlarsky,Anatoly; Au,Ka Man; Veksland,Michael; Zhu,Xiaoxun; Meagher,Mark; Good,Timothy; Hou,Richard; Hu,Daniel, Automatic digital-imaging based code symbol reading system supporting pass-through and presentation modes of system operation using automatic object direction detection, narrow-area and wide-area illumination control, and narrow-area and wide-area video image capture and processing techniques.
  17. Kotlarsky,Anatoly; Au,Ka Man; Veksland,Michael; Zhu,Xiaoxun; Meagher,Mark; Good,Timothy; Hou,Richard; Hu,Daniel, Automatic imaging-based code symbol reading system supporting a multi-tier modular software architecture, automatic illumination control, and video image capture and processing techniques.
  18. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic omnidirectional bar code symbol reading system employing linear-type and area-type bar code symbol reading stations within the system housing.
  19. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic omnidirectional bar code symbol reading system employing linear-type and area-type bar code symbol reading stations within the system housing.
  20. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatic point-of-sale based code symbol reading system employing automatic object motion detection and illumination control, and digital video image capturing and processing techniques.
  21. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Mikhail; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Automatically-triggered digital video imaging based code symbol reading system employing illumination and imaging subsystems controlled in response to real-time image quality analysis.
  22. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Automatically-triggered digital video-imaging based code symbol reading system for use in a point-of-sale (POS) environment.
  23. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Automatically-triggered digital video-imaging based code symbol reading system supporting dynamically controlled object illumination and digital video-imaging operations.
  24. Wang, Ynjiun; Havens, William H., Bar code reading device with global electronic shutter control.
  25. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Mikhail; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Code symbol reading system.
  26. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy, Compact bar code symbol reading system employing a complex of coplanar illumination and imaging stations for omni-directional imaging of objects within a 3D imaging volume.
  27. Gatto, Jean-Marie; Brunet De Courssou, Thierry, Compact document scanner with branding.
  28. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Digital image capture and processing engine employing optical waveguide technology for collecting and guiding LED-based illumination during object illumination and image capture modes of operation.
  29. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Digital image capture and processing system employing a micro-computing platform with an event-driven multi-tier modular software architecture and supporting an image-processing based illumination metering program for automatically adjusting illumination during object illumination and imaging operations.
  30. Kotlarsky, Anatoly; Zhu, Xiaoxun; Au, Ka Man, Digital image capture and processing system employing a multi-mode illumination subsystem adaptable to ambient illumination levels.
  31. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Digital image capture and processing system employing an illumination subassembly mounted about a light transmission aperture, and a field of view folding mirror disposed beneath the light transmission aperture.
  32. Kotlarsky, Anatoly; Zhu, Xiaoxun, Digital image capture and processing system employing multi-layer software-based system architecture permitting modification and/or extension of system features and functions by way of third party code plug-ins.
  33. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Digital image capture and processing system employing real-time analysis of image exposure quality and the reconfiguration of system control parameters based on the results of such exposure quality analysis.
  34. , Digital image capture and processing system having automatic illumination measurement and control capabilities realized using a photodetector operating independently of the image sensing array, and an image-processing based illumination metering program for automatically adjusting the illumination duration of the system during object illumination and imaging operations.
  35. Knowles, C. Harry; Zhu, Xiaoxun; Xian, Tao, Digital image capturing and processing system employing a plurality of area-type illuminating and imaging stations projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume, and controlling operations therewithin using.
  36. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital image capturing and processing system employing a plurality of coplanar illuminating and imaging stations projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume so as to support pass-through and presentation modes of digital imaging at a point of sale (POS) environment.
  37. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital image capturing and processing system employing a plurality of coplanar illuminating and imaging stations projecting a plurality of coplanar illumination and imaging planes into a 3D imaging volume, and controlling operations therewithin using control data derived from motion data collected from the automated detection of objects passing through said 3D imaging volume.
  38. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly; Ghosh, Sankar; Schnee, Michael; Spatafore, Pasqual; Amundsen, Thomas; Byun, Sung; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Digital image capturing and processing system employing an area-type image sensing array exposed to narrow-band illumination from a narrow-band illumination subsystem for a time duration controlled using a photodetector operated independently from said area-type image sensing array.
  39. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Digital image capturing and processing system employing an image capturing and processing module and an integrated electronic weigh scale module having a load cell centrally located with respect to said image capturing and processing module.
  40. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael, Digital image capturing and processing system employing coplanar illumination and imaging stations which generate coplanar illumination and imaging planes only when and where an object is being moved within the 3D imaging volume.
  41. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy, Digital image capturing and processing system employing imaging window protection plate having an aperture pattern and being disposed over said imaging window and beneath which resides a plurality of coplanar illumination and imaging stations.
  42. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Digital image capturing and processing system for producing and projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion and velocity of object.
  43. Knowles, C. Harry; Zhu, Xiaoxun; Xian, Tao, Digital image capturing and processing system for producing and projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion of objects present therewithin.
  44. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Digital image capturing and processing system having a plurality of coplanar illumination and imaging subsystems, each employing a dual-type coplanar linear illumination and imaging engine that supports image-processing based object motion and velocity detection, and automatic image formation and detection along the coplanar illumination and imaging plane produced thereby.
  45. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly, Digital image capturing and processing system producing narrow-band illumination when image sensor elements in a state of integration, and simultaneously detecting narrow-band illumination using an area-type image sensor and independently-operated photo-detector.
  46. Kotlarsky,Anatoly; Au,Ka Man; Zhu,Xiaoxun, Digital imaging-based bar code symbol reading system employing image cropping pattern generator and automatic cropped image processor.
  47. Kotlarsky, Anatoly; Zhu, Xiaoxun, Digital imaging-based code symbol reading system permitting modification of system features and functionalities.
  48. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  49. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  50. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  51. Wang, Ynjiun, Digital picture taking optical reader having hybrid monochrome and color image sensor array.
  52. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Tao,Xi; Kotlarsky,Anatoly; Russell,Garrett; Knowles,C. Harry, Digital-imaging based code symbol reading system employing a micro-computing platform supporting an event-driven multi-tier modular software architecture.
  53. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital-imaging based code symbol reading system employing a plurality of coplanar illumination and imaging subsystems, each having a local object motion detection subsystem for automatic detecting objects within the 3D imaging volume, and a local control subsystem for transmitting object detection state data to a global control subsystem for managing the state of operation of said coplanar illumination and imaging subsystems.
  54. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital-imaging based code symbol reading system employing a plurality of coplanar illumination and imaging subsystems, global object motion detection subsystem for automatically detecting objects within its 3D imaging volume, and global control subsystem for managing the state of operation of said coplanar illumination and imaging substems.
  55. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Digital-imaging based code symbol reading system employing an event-driven multi-tier modular software architecture and supporting automatic operating system login and loading of code symbol reading application.
  56. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Tao, Xi; Kotlarsky, Anatoly; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Digital-imaging code symbol reading system supporting automatic programming of system parameters for automatic configuration of said system in hands-on and hands-free modes of operation.
  57. Irwin, Jr., Kenneth E.; Mejenborg, Sten; Holbrook, Jonathan; Herndon, Burbank; Behm, William F.; Streeter, Gary R., Enhanced scanner design.
  58. Irwin, Jr., Kenneth E.; Mejenborg, Sten; Holbrook, Jonathan; Herndon, Burbank; Behm, William F.; Streeter, Gary R., Enhanced scanner design.
  59. Kotlarsky, Anatoly; Zhu, Xiaoxun, Hand-supportable digital image capture and processing system supporting a multi-tier modular software architecture.
  60. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly, Hand-supportable digital image capturing and processing system employing an area-type image sensing array exposed to illumination from an LED-based illumination array only when all sensor elements in said image-sensing array are activated and in a state of integration.
  61. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly; Ghosh, Sankar; Schnee, Michael; Spatafore, Pasqual; Amundsen, Thomas; Byun, Sung; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Hand-supportable digital image-processing based bar code symbol reading system employing image cropping zone (ICZ) framing and post-image capture cropping.
  62. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable digital imaging-based bar code symbol reader employing an event-driven system control subsystem, automatic IR-based object detection, and trigger-switch activated image capture and processing subsystem.
  63. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable imaging based bar code symbol reader employing automatic light exposure measurement and illumination control subsystem integrated therein.
  64. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Hand-supportable imaging-based bar code symbol reader employing a CMOS-type image sensor using global exposure techniques.
  65. Kotlarsky, Anatoly; Zhu, Xiaoxun, Image capture and processing system supporting a multi-tier modular software architecture.
  66. Kotlarsky, Anatoly; Zhu, Xiaoxun, Image capture and processing system supporting a multi-tier modular software architecture.
  67. Kotlarsky, Anatoly; Zhu, Xiaoxun, Image capture and processing system supporting a multi-tier modular software architecture.
  68. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  69. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  70. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  71. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  72. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  73. Wang, Ynjiun P.; Havens, William H., Image reader comprising CMOS based image sensor array.
  74. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  75. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  76. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  77. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  78. Wang, Ynjiun; Havens, William H., Image reader having image sensor array.
  79. Wang, Ynjiun Paul, Imaging apparatus comprising image sensor array having shared global shutter circuitry.
  80. Wang, Ynjiun Paul, Imaging apparatus comprising image sensor array having shared global shutter circuitry.
  81. Wang, Ynjiun Paul, Imaging apparatus comprising image sensor array having shared global shutter circuitry.
  82. Ren, Jin; Wang, Ynjiun Paul; Liu, Yong; Meier, Timothy; Deloge, Stephen Patrick, Indicia reading terminal with color frame processing.
  83. Ren, Leo; Wang, Ynjiun Paul; Liu, Yong; Meier, Timothy; Deloge, Stephen Patrick, Indicia reading terminal with color frame processing.
  84. Ren, Leo; Wang, Ynjiun Paul; Liu, Yong; Meier, Timothy; Deloge, Stephen Patrick, Indicia reading terminal with color frame processing.
  85. Mazowiesky, Thomas, Information readers, apparatuses including information readers, and related methods.
  86. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Mikhail; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Intelligent system for automatically recognizing objects at a point of sale (POS) station by omni-directional imaging of the objects using a complex of coplanar illumination and imaging subsystems.
  87. Ehrhart,Michael A.; Hussey,Robert M.; Dueker,Todd A.; Sanchez, III,Cayetano; Szrek,Walter; Abraitis,John C.; Lambert,Claude; Gougeon,Francois; Boulay,Robert; Mondou,Denis, Lottery game tickets and methods for making same.
  88. Eschbach, Reiner; Mantell, David A.; McConville, Paul J.; O'Neil, Jason; Snyder, Trevor J., Method and system of printing a scratch-off document.
  89. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Method for intelligently controlling the illumination and imagine of objects as they are moved through the 3D imaging volume of a digital image capturing and processing system.
  90. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Schmidt, Mark; Ciarlante, Nicola, Method of and apparatus for identifying consumer products in a retail environment when bar code symbols on the products are not readable or have been removed from packaging.
  91. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Furlong, John, Method of and system for returning a consumer product in a retail environment so as to prevent or reduce employee theft, as well as provide greater accountability for returned merchandise in retail store environments.
  92. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Method of automatically reading code symbols on objects present within the field of view (FOV) of a hand-supportable digital-imaging based code symbol reader, by simultaneously projecting an image cropping zone (ICZ) framing pattern and a field of illumination within the FOV during object illumination and imaging operations.
  93. Kotlarsky, Anatoly; Au, Ka Man; Veksland, Michael; Zhu, Xiaoxun; Meagher, Mark; Good, Timothy; Hou, Richard; Hu, Daniel, Method of dynamically controlling illumination and image capturing operations in a digital image capture and processing system.
  94. Kotlarsky, Anatoly; Au, Ka Man; Zhu, Xiaoxun, Method of dynamically managing system control parameters in a digital image capture and processing system.
  95. Kotlarsky, Anatoly; Zhu, Xiaoxun, Method of modifying and/or extending the standard features and functions of a digital image capture and processing system.
  96. Smith, Taylor; Kotlarsky, Anatoly; Wilz, Sr., David M.; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Murashka, Pavel, Method of programming the system configuration parameters of a digital image capture and processing system during the implementation of its communication interface with a host system without reading programming-type bar code symbols.
  97. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly; Ghosh, Sankar; Schnee, Michael; Spatafore, Pasqual; Amundsen, Thomas; Byun, Sung; Schmidt, Mark; Russell, Garrett; Bonanno, John; Knowles, C. Harry, Method of reading bar code symbols using a digital-imaging based code symbol reading system employing an event-driven multi-tier modular software architecture and supporting automatic operating system login and loading of bar code symbol reading application.
  98. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Method of reading code symbols using a digital image capturing and processing system employing a micro-computing platform with an event-driven multi-tier software architecture.
  99. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly; Ghosh,Sankar; Schnee,Michael; Spatafore,Pasqual; Amundsen,Thomas; Byun,Sung; Schmidt,Mark; Russell,Garrett; Bonanno,John; Knowles,C. Harry, Method of reading code symbols using a hand-supportable digital image capturing and processing device employing a micro-computing platform supporting an event-driven multi-tier modular software architecture.
  100. Zhu, Xiaoxun; Liu, Yong; Au, Ka Man; Hou, Rui; Yu, Hongpeng; Tao, Xi; Liu, Liang; Zhang, Wenhua; Kotlarsky, Anatoly, Method of setting the time duration of illumination from an LED-based illumination array employed in a digital imaging-based code symbol reader, using an image-processing based illumination metering program executed therewithin.
  101. Wang, Ynjiun, Method utilizing digital picture taking optical reader having hybrid monochrome and color image sensor.
  102. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Schmidt, Mark, Network of digital image capturing systems installed at retail POS-based stations and serviced by a remote image processing server in communication therewith.
  103. Fujiyoshi, Hironobu, Object detection device.
  104. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Omni-directional digital image capturing and processing system comprising coplanar illumination and imaging stations automatically detecting object motion and velocity and adjusting exposure and/or illumination control parameters therewithin.
  105. Knowles, C. Harry; Good, Timothy; Zhu, Xiaoxun; Xian, Tao, Omni-directional digital image capturing and processing system employing coplanar illumination and imaging planes and area-type illumination and imaging zones with the horizontal and vertical sections of the system housing.
  106. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Veksland, Michael; Kotlarsky, Anatoly; Furlong, John; Hernandez, Mark; Ciarlante, Nicola; Schmidt, Mark, Omni-directional digital image capturing and processing system employing coplanar illumination and imaging planes and area-type illumination and imaging zones within the system housing.
  107. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Omni-directional digital image capturing and processing system employing coplanar illumination and imaging stations in horizontal and vertical housing sections of the system.
  108. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Optical code symbol reading system employing an acoustic-waveguide structure for coupling sonic energy, produced from an electro-transducer, to sound wave ports formed in the system housing.
  109. Ehrhart,Michael; Longacre, Jr.,Andrew, Optical reader for classifying an image.
  110. Ehrhart, Michael A.; Longacre, Jr., Andrew, Optical reader having a color imager.
  111. Ehrhart,Michael; Longacre, Jr.,Andrew, Optical reader having a color imager.
  112. Ehrhart, Michael A.; Longacre, Jr., Andrew, Optical reader having an imager.
  113. Ehrhart, Michael A.; Longacre, Jr., Andrew, Optical reader having an imager.
  114. Ehrhart, Michael A.; Longacre, Jr., Andrew, Optical reader having an imager.
  115. Ehrhart, Michael A.; Longacre, Jr., Andrew, Optical reader having an imager.
  116. Ehrhart, Michael A.; Longacre, Jr., Andrew, Optical reader having an imager.
  117. Wang, Ynjiun P., Optical reader having reduced specular reflection read failures.
  118. Wang, Ynjiun P., Optical reader having reduced specular reflection read failures.
  119. Zhu,Xiaoxun; Liu,Yong; Au,Ka Man; Hou,Rui; Yu,Hongpeng; Tao,Xi; Liu,Liang; Zhang,Wenhua; Kotlarsky,Anatoly, Portable digital image capturing and processing system employing an area-type image sensing array exposed to illumination produced from an LED-based illumination array and measured using a photodector operated independently from said area-type image sensing array.
  120. Wang, Ynjiun; Havens, William H., System and method to automatically focus an image reader.
  121. Wesolek, Bryan J., Tablet computer.
  122. Wesolek, Bryan J., Tablet computer.
  123. Wesolek, Bryan J., Tablet computer.
  124. Mazowiesky, Thomas; Charych, Harold; Blaszczec, Mirek, Validator linear array.
  125. Kotlarsky, Anatoly; Zhu, Xiaoxun, digital image capturing and processing system allowing third-parties to extend the features and functions of said system, and modify the standard behavior thereof without permanently modifying the standard features and functions thereof.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로