• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Vertical take-off and landing vehicle configured as a compound autogyro

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) B64C-027/22   
미국특허분류(USC) 244/008
출원번호 US-0352637 (1999-07-15)
발명자 / 주소
대리인 / 주소
    Salzman & Levy
인용정보 피인용 횟수 : 20  인용 특허 : 7

A compound autogyro has a unique system of rotor blade retraction and vectored thrust. Redundant thrust systems provide for emergency conditions. Located in the upper mast are twin gas lines leading to a hub section of the rotor. In the hub, they divide the mass flow into two additional gas lines reaching to the tip ends of rigid rotor blades. A revolving, upper section of the rotor mast is attached to a lower, non-rotating section by a spherical bearing. Directly beneath this attach bearing is a distribution plenum, which receives the mass flow from eac...


1. A compound autogyro having built in redundancy for safety purposes, comprising:a fuselage devoid of any tail rotors having an upper surface for supporting at least one rotor blade; a number of fixed wings supported by said fuselage, said fixed wings having control surfaces and high lift means; at least one rotor blade rotatively supported upon said upper surface of said fuselage; and a plurality of jet propulsion engines supported by said fuselage for generating thrust to achieve flight and lift, and operatively connected to said at least one rotor bl...

이 특허를 인용한 특허 피인용횟수: 20

  1. Wilcynski, Paul J.. Aircraft having multiple seating configurations and associated systems and methods. USP2014058720820.
  2. Liu, Danny D.; Chen, Ping-Chih; Sarhaddi, Darius. Apparatus and methods for variable sweep body conformal wing with application to projectiles, missiles, and unmanned air vehicles. USP2005086923404.
  3. Horn, Gregory Mainland; Vander Lind, Damon. Control system for a stopped rotor aircraft. USP2018059975629.
  4. Wei, Guoxin. Crash-resistant aircraft and crash-resistant control method. USP20180610005559.
  5. Vetter, Eugene H; Vetter, James W; Vetter, Paul A. Devices and methods for in flight transition VTOL/fixed wing hybrid aircraft structures and flight modes. USP2018029896197.
  6. Dickman, Clifford C.. Directional control for a helicopter. USP2013108561938.
  7. Nyhus, Daniel A.. Flexible ducting system including an articulable sealed joint. USP2009107600711.
  8. Nyhus, Daniel A.. Flexible ducting system including an articulable sealed joint. USP2012038141912.
  9. Muylaert,Neal W.. Flow path splitter duct. USP2008087412825.
  10. Gemmati, Bernard. Long-range aircraft with high forward speed in cruising flight. USP2013098540184.
  11. Richardson,Steven D.; Walliser,Eric W.. Rotor wing aircraft having an adjustable tail nozzle. USP2008077395988.
  12. Richardson, Steven D.. Rotor/wing aircraft including vectorable nozzle. USP20180910065735.
  13. Walliser, Eric W.; Nowak, Robert A.. Rotor/wing dual mode hub fairing system. USP2010127857252.
  14. Walliser,Eric W.; Nowak,Robert A.. Rotor/wing dual mode hub fairing system. USP2008107434763.
  15. Roesch, Philippe. Rotorcraft control system. USP2012058170728.
  16. Vander Lind, Damon; Horn, Gregory Mainland. Stopped rotor aircraft. USP2018049944387.
  17. Vander Lind, Damon; Horn, Gregory Mainland. Stopped rotor aircraft. USP20180710017246.
  18. Walliser, Eric W.. Systems and methods for rotor/wing aircraft. USP2014068757537.
  19. VanderMey,Timothy; VanderMey,Josiah. Vertical take-off and landing (VTOL) aircraft with distributed thrust and control. USP2007017159817.
  20. Scott, Mark W.; Cherepinsky, Igor. Vertical take-off and landing drag rudder. USP20180710011350.