$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Method for operation of a catalytic reactor

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) C01K-001/00    C01B-031/20   
미국특허분류(USC) 423/246; 423/437.2
출원번호 US-0793834 (2001-02-26)
발명자 / 주소
출원인 / 주소
대리인 / 주소
    McCormick, Paulding & Huber LLP
인용정보 피인용 횟수 : 21  인용 특허 : 5
초록

A method for the selective oxidation of carbon monoxide in a gas stream comprising carbon monoxide, hydrogen and oxygen in an adiabatically operated fixed-bed, catalytic reactor. In the method the inlet temperature is controlled based upon the space velocity of the gas stream through the reactor.

대표
청구항

1. The method of selectively oxidizing carbon monoxide in a gas stream comprising carbon monoxide, hydrogen and oxygen within an adiabatically-operated, fixed-bed catalytic reactor having a catalyst suitable for promoting oxidation of the carbon monoxide and an exit, the method comprising: determining a flow rate, an oxygen concentration, a carbon monoxide concentration, and a first temperature of the gas stream, determining based upon the flow rate a space velocity of the gas stream through the catalytic reactor, determining based upon the space ve...

이 특허를 인용한 특허 피인용횟수: 21

  1. Hamrin, Douglas; Lampe, Steve. Controls for multi-combustor turbine. USP2016039273606.
  2. Prabhu, Edan. Fuel oxidation in a gas turbine system. USP2017039587564.
  3. Son, In-Hyuk; Shin, Woo-Cheol; Lee, Sung-Chul; Ahn, Jin-Goo. Fuel reformer. USP2013048409306.
  4. Maslov, Boris A.. Gradual oxidation and autoignition temperature controls. USP2015129206980.
  5. Maslov, Boris A.. Gradual oxidation and autoignition temperature controls. USP2016039273608.
  6. Maslov, Boris A.. Gradual oxidation and multiple flow paths. USP2016059328660.
  7. Armstrong, Jeffrey. Gradual oxidation below flameout temperature. USP2016069371993.
  8. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Gradual oxidation with adiabatic temperature above flameout temperature. USP2016079381484.
  9. Maslov, Boris A.; Armstrong, Jeffrey. Gradual oxidation with flue gas. USP2017089726374.
  10. Watts, Jim. Gradual oxidation with gradual oxidizer warmer. USP2015119194584.
  11. Hamrin, Douglas; Armstrong, Jeffrey. Gradual oxidation with heat control. USP2016069359948.
  12. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016059347664.
  13. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016059328916.
  14. Lampe, Steve; Hamrin, Douglas. Gradual oxidation with heat control. USP2016069359947.
  15. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Gradual oxidation with heat transfer. USP2017029567903.
  16. Armstrong, Jeffrey; Maslov, Boris A.. Gradual oxidation with heat transfer. USP2016019234660.
  17. Hamrin, Douglas; Martin, Richard; Armstrong, Jeffrey. Gradual oxidation with heat transfer. USP2016059353946.
  18. Martin, Richard; Armstrong, Jeffrey; Hamrin, Douglas. Hybrid gradual oxidation. USP2017019534780.
  19. Hamrin, Douglas; Lampe, Steve. Multi-combustor turbine. USP2016039279364.
  20. Prabhu, Edan. Oxidizing fuel in multiple operating modes. USP2018039926846.
  21. Armstrong, Jeffrey; Martin, Richard; Hamrin, Douglas. Staged gradual oxidation. USP2016029267432.