$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe) 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-021/331
출원번호 US-0075700 (2002-02-14)
발명자 / 주소
  • Ozkan, Cengiz S.
  • Salmi, Abderrahmane
출원인 / 주소
  • Applied Micro Circuits Corporation
대리인 / 주소
    Gray Cary Ware & Freidenrich
인용정보 피인용 횟수 : 150  인용 특허 : 14

초록

A Heterojunction Bipolar Transistor (HBT) is provided where the SiGe base region is formed through selective deposition, after the formation of the base electrode layer and the emitter window. A sacrificial oxide layer is deposited between the collector and base electrode. The contact to the SiGe ba

대표청구항

A Heterojunction Bipolar Transistor (HBT) is provided where the SiGe base region is formed through selective deposition, after the formation of the base electrode layer and the emitter window. A sacrificial oxide layer is deposited between the collector and base electrode. The contact to the SiGe ba

이 특허에 인용된 특허 (14)

  1. Sato Fumihiko (Tokyo JPX), Bipolar transistor having thin intrinsic base with low base resistance and method for fabricating the same.
  2. Sato Fumihiko,JPX, Bipolar transistor with polysilicon base.
  3. Burghartz Joachim N. (Shrub Oak NY), Fabrication of vertical SiGe base HBT with lateral collector contact on thin SOI.
  4. Endo Takahiko (Hino JPX) Katoh Riichi (Yokohama JPX), Heterojunction bipolar transistor.
  5. Jalali-Farahani Bahram ; King Clifford Alan, Heterojunction bipolar transistor having mono crystalline SiGe intrinsic base and polycrystalline SiGe and Si extrinsic.
  6. Yamazaki Toru (Tokyo JPX), Heterojunction bipolar transistor having particular Ge distributions and gradients.
  7. Johnson F. Scott (Plano TX), High speed bipolar transistor using a patterned etch stop and diffusion source.
  8. Ahlgren David (Wappingers Falls NY) Chu Jack (Long Island City NY) Revitz Martin (Poughkeepsie NY) Ronsheim Paul (Wappingers Falls NY) Saccamango Mary (Patterson NY) Sunderland David (Hopewell Juncti, Method for making heterojunction bipolar transistor with self-aligned retrograde emitter profile.
  9. Lammert Michael D., Method of fabricating high .beta.HBT devices.
  10. Kamins Theodore I. (4132 Thain Way Palo Alto CA 94306) Wang Albert (14369 Saddle Mount Dr. Los Altos CA 94022), Method of forming silicon/silicon-germanium heterojunction bipolar transistor.
  11. Sato Fumihiko (Tokyo JPX), Semiconductor device.
  12. Usagawa Toshiyuki (Yono JPX) Takai Atsushi (Tokyo JPX) Itoh Hiroyuki (Tokyo JPX), Semiconductor device.
  13. Sato Fumihiko (Tokyo JPX), Semiconductor device having bipolar transistor free from leakage current across thin base region.
  14. Katsumata Yasuhiro,JPX ; Yoshino Chihiro,JPX ; Inoh Kazumi,JPX, Semiconductor device having bipolar transistor with unique ratio of base gummel number to impurity concentration of coll.

이 특허를 인용한 특허 (150)

  1. Enicks, Darwin Gene; Carver, Damian, Bandgap and recombination engineered emitter layers for SiGe HBT performance optimization.
  2. Enicks,Darwin Gene; Carver,Damian, Bandgap engineered mono-crystalline silicon cap layers for SiGe HBT performance enhancement.
  3. Camillo-Castillo, Renata; Gray, Peter B.; Harame, David L.; Joseph, Alvin J.; Khater, Marwan H.; Liu, Qizhi, Bipolar junction transistors with a link region connecting the intrinsic and extrinsic bases.
  4. Camillo-Castillo, Renata; Gray, Peter B.; Harame, David L.; Joseph, Alvin J.; Khater, Marwan H.; Liu, Qizhi, Bipolar junction transistors with a link region connecting the intrinsic and extrinsic bases.
  5. Adkisson, James W.; Elliott, James R.; Harame, David L.; Khater, Marwan H.; Leidy, Robert K.; Liu, Qizhi; Pekarik, John J., Bipolar junction transistors with reduced base-collector junction capacitance.
  6. Adkisson, James W.; Elliott, James R.; Harame, David L.; Khater, Marwan H.; Leidy, Robert K.; Liu, Qizhi; Pekarik, John J., Bipolar junction transistors with reduced base-collector junction capacitance.
  7. Adam,Thomas N.; Chan,Kevin K.; Joseph,Alvin J.; Khater,Marwan H.; Liu,Qizhi; Rainey,Beth Ann; Schonenberg,Kathryn T., Bipolar transistor structure with self-aligned raised extrinsic base and methods.
  8. Adam,Thomas N.; Chan,Kevin K.; Joseph,Alvin J.; Khater,Marwan H.; Liu,Qizhi; Rainey,Beth Ann; Schonenberg,Kathryn T., Bipolar transistor structure with self-aligned raised extrinsic base and methods.
  9. Chyan, Yih-Feng; Huang, Chunchieh; Leung, Chung Wai; Ma, Yi; Moinian, Shahriar, Bipolar transistor with a low K material in emitter base spacer regions.
  10. Enicks, Darwin G., Boron etch-stop layer and methods related thereto.
  11. Chen, Xiangdong; Dyer, Thomas W.; Settlemyer, Kenneth; Yang, Haining S., CMOS devices with stressed channel regions, and methods for fabricating the same.
  12. Zhu, Huilong; Yang, Baewon, CMOS structures and methods for improving yield.
  13. Zhu, Huilong; Yang, Daewon, CMOS structures and methods for improving yield.
  14. Zhu, Huilong; Yang, Daewon, CMOS structures and methods using self-aligned dual stressed layers.
  15. Adkisson, James W.; Harame, David L.; Liu, Qizhi, Collector-up bipolar junction transistors in BiCMOS technology.
  16. Chidambarrao, Dureseti; Freeman, Gregory G.; Khater, Marwan H., Creating increased mobility in a bipolar device.
  17. Chidambarrao,Dureseti; Freeman,Gregory G.; Khater,Marwan H., Creating increased mobility in a bipolar device.
  18. Zhu,Huilong; Doris,Bruce B.; Chen,Huajie, Dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering.
  19. Fang, Sunfei; Kim, Jun Jung; Luo, Zhijiong; Ng, Hung Y.; Rovedo, Nivo; Teh, Young Way, Dual stress memory technique method and related structure.
  20. Chidambarrao,Dureseti; Dokumaci,Omer H.; Doris,Bruce B.; Gluschenkov,Oleg; Zhu,Huilong, Dual stressed SOI substrates.
  21. Chidambarrao,Dureseti; Doris,Bruce B.; Gluschenkov,Oleg; Dokumaci,Omer H.; Zhu,Huilong, Dual stressed SOI substrates.
  22. Chidambarrao,Dureseti, Enhanced PFET using shear stress.
  23. Zhu, Huilong; Luo, Zhijiong, FinFET structure with multiply stressed gate electrode.
  24. Chidambarrao, Dureseti, Gate electrode stress control for finFET performance enhancement.
  25. Verma,Purakh Raj; Chu,Shao fu Sanford; Chan,Lap; Li,Jian Xun; Zheng,Zhen Jia, Heterojunction bipolar transistor using reverse emitter window.
  26. Doris, Bruce B.; Gluschenkov, Oleg G.; Zhu, Huilong, High mobility CMOS circuits.
  27. Doris,Bruce B.; Gluschenkov,Oleg G.; Zhu,Huilong, High mobility CMOS circuits.
  28. Doris,Bruce B.; Gluschenkov,Oleg G.; Zhu,Huilong, High mobility CMOS circuits.
  29. Doris,Bruce B.; Chidambarrao,Dureseti; Ku,Suk Hoon, High performance CMOS device structures and method of manufacture.
  30. Doris,Bruce B.; Chidambarrao,Dureseti; Ku,Suk Hoon, High performance CMOS device structures and method of manufacture.
  31. Doris, Bruce B; Gluschenkov, Oleg G, High performance strained CMOS devices.
  32. Doris,Bruce B.; Gluschenkov,Oleg G., High performance strained CMOS devices.
  33. Chidambarrao, Dureseti; Donaton, Ricardo A.; Henson, William K.; Rim, Kern, High performance stress-enhance MOSFET and method of manufacture.
  34. Chidambarrao, Dureseti; Donaton, Ricardo A.; Henson, William K.; Rim, Kern, High performance stress-enhance MOSFET and method of manufacture.
  35. Chidambarrao, Dureseti; Donaton, Ricardo A.; Henson, William K.; Rim, Kern, High performance stress-enhance MOSFET and method of manufacture.
  36. Chen, Huajie; Chidambarrao, Dureseti; Dokumaci, Omer H., High performance stress-enhanced MOSFETS using Si:C and SiGe epitaxial source/drain and method of manufacture.
  37. Chen, Huajie; Chidambarrao, Dureseti; Dokumaci, Omer H., High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture.
  38. Chen, Huajie; Chidambarrao, Dureseti; Dokumaci, Omer H., High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture.
  39. Chen, Huajie; Chidambarrao, Dureseti; Dokumaci, Omer H., High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture.
  40. Chen,Huajie; Chidambarrao,Dureseti; Dokumaci,Omer H, High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture.
  41. Doris, Bruce B.; Guarini, Kathryn W.; Ieong, Meikei; Narasimha, Shreesh; Rim, Kern; Sleight, Jeffrey W.; Yang, Min, High-performance CMOS SOI devices on hybrid crystal-oriented substrates.
  42. Doris,Bruce B.; Guarini,Kathryn W.; Ieong,Meikei; Narasimha,Shreesh; Rim,Kern; Sleight,Jeffrey W.; Yang,Min, High-performance CMOS devices on hybrid crystal oriented substrates.
  43. Zhu,Huilong; Oldiges,Philip J.; Doris,Bruce B.; Wang,Xinlin; Gluschenkov,Oleg; Chen,Huajie; Zhang,Ying, Hybrid SOI-bulk semiconductor transistors.
  44. Zhu, Huilong; Oldiges, Philip J.; Doris, Bruce B.; Wang, Xinlin; Gluschenkov, Oleg; Chen, Huajie; Zhang, Ying, Hybrid SOI/bulk semiconductor transistors.
  45. Enicks, Darwin G.; Chaffee, John Taylor; Carver, Damian A., Integrated circuit structures containing a strain-compensated compound semiconductor layer and methods and systems related thereto.
  46. Enicks, Darwin Gene; Chaffee, John; Carver, Damian A., Integrated circuit structures containing a strain-compensated compound semiconductor layer and methods and systems related thereto.
  47. Enicks,Darwin G., Integrated circuit structures having a boron-and carbon-doped etch-stop and methods, devices and systems related thereto.
  48. Chidambarrao, Dureseti; Dokumaci, Omer H., MOSFET performance improvement using deformation in SOI structure.
  49. Chidambarrao, Dureseti; Dokumaci, Omer H., MOSFET performance improvement using deformation in SOI structure.
  50. Yang, Haining S.; Zhu, Huilong, Method and apparatus for increase strain effect in a transistor channel.
  51. Yang,Haining S.; Zhu,Huilong, Method and apparatus for increase strain effect in a transistor channel.
  52. Yang,Haining S.; Zhu,Huilong, Method and apparatus to increase strain effect in a transistor channel.
  53. Yang,Haining S.; Zhu,Huilong, Method and structure for controlling stress in a transistor channel.
  54. Steegen, An L.; Yang, Haining S.; Zhang, Ying, Method and structure for forming strained SI for CMOS devices.
  55. Steegen,An L; Yang,Haining S.; Zhang,Ying, Method and structure for forming strained SI for CMOS devices.
  56. Steegen, An L.; Yang, Haining S.; Zhang, Ying, Method and structure for forming strained Si for CMOS devices.
  57. Steegen,An L.; Yang,Haining S.; Zhang,Ying, Method and structure for forming strained Si for CMOS devices.
  58. Yang, Haining S.; Lim, Eng Hua, Method and structure for forming strained devices.
  59. Chidambarrao, Dureseti; Dokumaci, Omer H., Method and structure for improved MOSFETs using poly/silicide gate height control.
  60. Chidambarrao,Dureseti; Dokumaci,Omer H., Method and structure for improved MOSFETs using poly/silicide gate height control.
  61. Chidambarrao, Dureseti; Greene, Brian J., Method and structure for improving device performance variation in dual stress liner technology.
  62. Chidambarrao,Dureseti; Greene,Brian J., Method and structure for improving device performance variation in dual stress liner technology.
  63. Enicks,Darwin Gene, Method and system for controlled oxygen incorporation in compound semiconductor films for device performance enhancement.
  64. Enicks, Darwin Gene, Method and system for providing a metal oxide semiconductor device having a drift enhanced channel.
  65. Enicks, Darwin G., Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator.
  66. Chidambarrao,Dureseti; Dokumaci,Omer H., Method for reduced N+ diffusion in strained Si on SiGe substrate.
  67. Chidambarrao,Dureseti; Dokumaci,Omer H., Method for reduced N+ diffusion in strained Si on SiGe substrate.
  68. Chidambarrao,Dureseti; Dokumaci,Omer H., Method for reduced N+ diffusion in strained Si on SiGe substrate.
  69. Belyansky,Michael P.; Doris,Bruce B.; Gluschenkov,Oleg, Method of fabricating mobility enhanced CMOS devices.
  70. John, Jay P.; Kirchgessner, James A.; Menner, Matthew W., Method of forming a bipolar transistor and semiconductor component thereof.
  71. Chen, Huajie; Chidambarrao, Dureseti; Holt, Judson R.; Ouyang, Qiqing C.; Panda, Siddhartha, Method of forming a cross-section hourglass shaped channel region for charge carrier mobility modification.
  72. Chen,Xiaomeng; Jeng,Shwu Jen; Kim,Byeong Y.; Nayfeh,Hasan M., Method of making a semiconductor structure.
  73. Hijzen, Erwin B.; Meunier-Bellard, Philippe; Donkers, Johannes J. T. M., Method of manufacturing a bipolar transistor and bipolar transistor obtained therewith.
  74. Cheng,Kangguo; Chidambarrao,Dureseti, Method of manufacturing a strained silicon on a SiGe on SOI substrate.
  75. Chidambarrao,Dureseti; Dokumaci,Omer H., Method of manufacturing strained dislocation-free channels for CMOS.
  76. Yang, Haining S.; Panda, Siddhartha, Method to increase strain enhancement with spacerless FET and dual liner process.
  77. Guarin, Fernando; Hostetter, Jr., J. Edwin; Rauch, III, Stewart E.; Wang, Ping-Chuan; Yang, Zhijian J., Methodology for recovery of hot carrier induced degradation in bipolar devices.
  78. Belyansky, Michael P.; Doris, Bruce B.; Gluschenkov, Oleg G., Mobility enhanced CMOS devices.
  79. Adam, Thomas N.; Chidambarrao, Dureseti, Mobility enhancement in SiGe heterojunction bipolar transistors.
  80. Chidambarrao,Dureseti; Dokumaci,Omer H.; Gluschenkov,Oleg G., NFETs using gate induced stress modulation.
  81. Cheng, Kangguo; Divakaruni, Ramachandra, Patterned strained semiconductor substrate and device.
  82. Cheng, Kangguo; Divakaruni, Ramachandra, Patterned strained semiconductor substrate and device.
  83. Cheng, Kangguo; Divakaruni, Ramachandra, Patterned strained semiconductor substrate and device.
  84. Cheng,Kangguo; Divakaruni,Ramachandra, Patterned strained semiconductor substrate and device.
  85. Zhu,Huilong; Doris,Bruce B.; Mocuta,Dan M., Protecting silicon germanium sidewall with silicon for strained silicon/silicon mosfets.
  86. Chidambarrao, Dureseti; Mocuta, Anda C.; Mocuta, Dan M.; Radens, Carl, Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain.
  87. Chidambarrao, Dureseti; Mocuta, Anda C.; Mocuta, Dan M.; Radens, Carl, Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain.
  88. Beintner,Jochen; Bronner,Gary B.; Divakaruni,Ramachandra; Kim,Byeong Y., Raised STI process for multiple gate ox and sidewall protection on strained Si/SGOI structure with elevated source/drain.
  89. Chidambarrao,Dureseti, Rotational shear stress for charge carrier mobility modification.
  90. Chidambarrao,Dureseti, Rotational shear stress for charge carrier mobility modification.
  91. Deshpande, Sadanand V.; Doris, Bruce B.; Rausch, Werner A.; Slinkman, James A., STI stress modification by nitrogen plasma treatment for improving performance in small width devices.
  92. Deshpande,Sadanand V.; Doris,Bruce B.; Rausch,Werner A.; Slinkman,James A., STI stress modification by nitrogen plasma treatment for improving performance in small width devices.
  93. El-Diwany, Monir; Sadovnikov, Alexei; Ramdani, Jamal, Self-aligned bipolar transistor structure.
  94. Joseph, Alvin J.; Liu, Qizhi; Rainey, BethAnn; Schonenberg, Kathryn T., Self-aligned raised extrinsic base bipolar transistor structure and method.
  95. El-Kareh, Badih; Yasuda, Hiroshi; Balster, Scott, Semiconductor device having a first bipolar device and a second bipolar device and method for fabrication.
  96. Chen, Xiangdong; Yang, Haining S., Semiconductor device structure having enhanced performance FET device.
  97. Arnold, John C.; Chidambarrao, Dureseti; Li, Ying; Malik, Rajeev; Narasimha, Shreesh; Panda, Siddhartha; Tessier, Brian L.; Wise, Richard, Semiconductor device structure having low and high performance devices of same conductive type on same substrate.
  98. Chen, Xiaomeng; Jeng, Shwu-Jen; Kim, Byeong Y.; Nayfeh, Hasan M., Semiconductor structure having undercut-gate-oxide gate stack enclosed by protective barrier material.
  99. Zhu, Huilong; Greene, Brian J.; Chidambarrao, Dureseti; Freeman, Gregory G., Semiconductor-on-insulator structures including a trench containing an insulator stressor plug and method of fabricating same.
  100. Chidambarrao, Dureseti; Dokumaci, Omer H.; Rengarajan, Rajesh; Steegen, An L., Silicide proximity structures for CMOS device performance improvements.
  101. Chidambarrao, Dureseti; Dokumaci, Omer H.; Gluschenkov, Oleg, Silicon device on SI:C-OI and SGOI and method of manufacture.
  102. Chidambarrao, Duresti; Dokumaci, Omer H.; Gluschenkov, Oleg G., Silicon device on Si: C-oi and Sgoi and method of manufacture.
  103. Chidambarrao, Dureseti; Dokumaci, Omer H.; Gluschenkov, Oleg G., Silicon device on Si:C SOI and SiGe and method of manufacture.
  104. Chidambarrao, Dureseti; Dokumaci, Omer H.; Gluschenkov, Oleg G., Silicon device on Si:C-OI and SGOI and method of manufacture.
  105. Chidambarrao,Dureseti; Dokumaci,Omer H.; Gluschenkov,Oleg G., Silicon device on Si:C-OI and SGOI and method of manufacture.
  106. Ajmera, Atul C.; Baiocco, Christopher V.; Chen, Xiangdong; Gao, Wenzhi; Teh, Young Way, Spacer and process to enhance the strain in the channel with stress liner.
  107. de Souza, Joel P.; Hamaguchi, Masafumi; Ozcan, Ahmet S.; Sadana, Devendra K.; Saenger, Katherine L.; Wall, Donald R., Strain preserving ion implantation methods.
  108. Chan, Kevin K.; Chu, Jack O.; Rim, Kern; Shi, Leathen, Strained Si MOSFET on tensile-strained SiGe-on-insulator (SGOI).
  109. Chan,Kevin K.; Chan,Jack Q; Rim,Kern; Shi,Leathen, Strained Si MOSFET on tensile-strained SiGe-on-insulator (SGOI).
  110. Chan,Kevin K.; Chu,Jack O.; Rim,Kern; Shi,Leathen, Strained Si MOSFET on tensile-strained SiGe-on-insulator (SGOI).
  111. Chan,Kevin K.; Chu,Jack O.; Rim,Kern; Shi,Leathen, Strained Si MOSFET on tensile-strained SiGe-on-insulator (SGOI).
  112. Chidambarrao, Dureseti; Dokumaci, Omer H.; Gluschenkov, Oleg G.; Zhu, Huilong, Strained Si on multiple materials for bulk or SOI substrates.
  113. Chidambarrao,Dureseti; Dokumaci,Omer H.; Gluschenkov,Oleg G.; Zhu,Huilong, Strained Si on multiple materials for bulk or SOI substrates.
  114. Chidambarrao,Dureseti; Dokumaci,Omer H., Strained dislocation-free channels for CMOS and method of manufacture.
  115. Doris,Bruce B.; Chidambarrao,Dureseti; Ieong,MeiKei; Mandelman,Jack A., Strained finFET CMOS device structures.
  116. Chidambarrao,Dureseti; Dokumaci,Omer H.; Gluschenkov,Oleg G., Strained finFETs and method of manufacture.
  117. Cheng,Kangguo; Chidambarrao,Dureseti, Strained silicon on a SiGe on SOI substrate.
  118. Chidambarrao, Dureseti; Dokumaci, Omer H., Strained silicon on relaxed sige film with uniform misfit dislocation density.
  119. Bryant, Andres; Ouyang, Qiqing; Rim, Kern, Strained-silicon CMOS device and method.
  120. Bryant,Andres; Ouyang,Qiqing; Rim,Kern, Strained-silicon CMOS device and method.
  121. Chidambarrao, Dureseti; Henson, William K.; Rim, Kern; Wille, William C., Stress engineering using dual pad nitride with selective SOI device architecture.
  122. Chidambarrao,Dureseti; Henson,William K.; Rim,Kern; Wille,William C., Stress engineering using dual pad nitride with selective SOI device architecture.
  123. Zhu, Huilong; Wang, Jing, Stress-generating shallow trench isolation structure having dual composition.
  124. Zhu, Huilong; Wang, Jing, Stress-generating shallow trench isolation structure having dual composition.
  125. Zhu, Huilong; Wang, Jing, Stress-generating shallow trench isolation structure having dual composition.
  126. Zhu, Huilong; Greene, Brian J.; Chidambarrao, Dureseti; Freeman, Gregory G., Stress-generating structure for semiconductor-on-insulator devices.
  127. Zhu, Huilong; Greene, Brian J.; Chidambarrao, Dureseti; Freeman, Gregory G., Stress-generating structure for semiconductor-on-insulator devices.
  128. Doris,Bruce B.; Belyansky,Michael P.; Boyd,Diane C.; Chidambarrao,Dureseti; Gluschenkov,Oleg, Stressed semiconductor device structures having granular semiconductor material.
  129. Doris,Bruce B; Belyansky,Michael P; Boyd,Diane C; Chidambarrao,Dureseti; Gluschenkov,Oleg, Stressed semiconductor device structures having granular semiconductor material.
  130. Zhu,Huilong; Doris,Bruce B.; Oldiges,Philip J.; Ieong,Meikei; Yang,Min; Chen,Huajie, Structure and method for manufacturing planar strained Si/SiGe substrate with multiple orientations and different stress levels.
  131. Zhu,Huilong; Doris,Bruce B., Structure and method for manufacturing strained FINFET.
  132. Zhu,Huilong; Doris,Bruce B., Structure and method for manufacturing strained FINFET.
  133. Chan,Victor W. C.; Lee,Yong M.; Yang,Haining, Structure and method of applying stresses to PFET and NFET transistor channels for improved performance.
  134. Cabral, Jr.,Cyril; Doris,Bruce B.; Kanarsky,Thomas S.; Liu,Xiao H.; Zhu,Huilong, Structure and method to generate local mechanical gate stress for MOSFET channel mobility modification.
  135. Cabral, Jr.,Cyril; Doris,Bruce B.; Kanarsky,Thomas S.; Liu,Xiao H.; Zhu,Huilong, Structure and method to generate local mechanical gate stress for MOSFET channel mobility modification.
  136. Yang,Haining S.; Zhu,Huilong, Structure and method to induce strain in a semiconductor device channel with stressed film under the gate.
  137. Chen,Xiangdong; Yang,Haining S., Structure and method to optimize strain in CMOSFETs.
  138. Yang, Haining; Li, Wai-Kin, Structure and method to use low k stress liner to reduce parasitic capacitance.
  139. Cheng,Kangguo; Chidambarrao,Dureseti; Divakaruni,Rama; Gluschenkov,Oleg G., Structure of vertical strained silicon devices.
  140. Zhu, Huilong; Bedell, Steven W.; Doris, Bruce B.; Zhang, Ying, Structures and methods for making strained MOSFETs.
  141. Zhu,Hiulong; Bedell,Steven W.; Doris,Bruce B.; Zhang,Ying, Structures and methods for making strained MOSFETs.
  142. Zhu,Huilong; Doris,Bruce B.; Chen,Huajie, Structures and methods for manufacturing of dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering with SiGe and/or Si:C.
  143. Zhu, Huilong; Doris, Bruce B.; Chen, Huajie, Structures and methods for manufacturing of dislocation free stressed channels in bulk silicon and SOI MOS devices by gate stress engineering with SiGe and/or Si:C.
  144. Zhu,Huilong, Structures and methods for manufacturing p-type MOSFET with graded embedded silicon-germanium source-drain and/or extension.
  145. Xu, Mingwei; Ramdani, Jamal, System and method for providing a polyemit module for a self aligned heterojunction bipolar transistor architecture.
  146. Dunn, James S.; Liu, Qizhi, Trench isolation for bipolar junction transistors in BiCMOS technology.
  147. Dunn, James S.; Liu, Qizhi, Trench isolation for bipolar junction transistors in BiCMOS technology.
  148. Bedell,Stephen W.; Domenicucci,Anthony G.; Fogel,Keith E.; Leobandung,Effendi; Sadana,Devendra K., Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer.
  149. Bedell,Stephen W.; Domenicucci,Anthony G.; Fogel,Keith E.; Leobandung,Effendi; Sadana,Devendra K., Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer.
  150. Zhu, Huilong; Luo, Zhijiong, finFET structure with multiply stressed gate electrode.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로