$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색도움말
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

통합검색

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

특허 상세정보

Miniature attitude sensing suite

특허상세정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) G06F-007/00   
미국특허분류(USC) 701/004; 701/013; 701/222; 701/226; 244/169; 244/165; 244/171
출원번호 US-0058964 (2002-01-28)
발명자 / 주소
  • Johnson, William M.
  • Musoff, Howard
  • Sargent, Darryl G.
  • Gilmore, Jerold P.
  • Dennehy, Cornelius J.
출원인 / 주소
  • The Charles Stark Draper Laboratory, Inc.
대리인 / 주소
    Testa, Hurwitz & Thibeault, LLP
인용정보 피인용 횟수 : 23  인용 특허 : 35
초록

The present invention provides methods of and apparatus for determining the inertial attitude of an aerospace vehicle. In one embodiment, the invention provides a rotational astronomical object-sighting concept to determine the inertial attitude of an axis of the aerospace vehicle without the star identification or dragback. In another embodiment, the invention provides an attitude measurement apparatus comprising a high sensitivity optical sensor and a low power inertial sensor.

대표
청구항

The present invention provides methods of and apparatus for determining the inertial attitude of an aerospace vehicle. In one embodiment, the invention provides a rotational astronomical object-sighting concept to determine the inertial attitude of an axis of the aerospace vehicle without the star identification or dragback. In another embodiment, the invention provides an attitude measurement apparatus comprising a high sensitivity optical sensor and a low power inertial sensor. ones, wherein the numerator of each of said fractions represents the power ...

인용문헌 (35)

  1. McRobbie David P.,GBX ; Weston John L.,GBX, Aided inertial navigation system.
  2. Johnson William M. (Sudbury MA) Musoff Howard (Brookline MA), Apparatus and method for autonomous satellite attitude sensing.
  3. Didinsky Garry ; Wu Yeong-Wei Andy, Attitude determination system and method.
  4. Yoshikawa Shoji,JPX ; Yamada Katsuhiko,JPX ; Sakashita Hiroshi,JPX ; Yonechi Hiroo,JPX, Attitude determination system for artificial satellite.
  5. Yoshikawa Shoji,JPX ; Yamada Katsuhiko,JPX ; Sakashita Hiroshi,JPX ; Yonechi Hiroo,JPX, Attitude determination system for artificial satellite.
  6. Needelman David D., Confused-in-space stellar attitude acquisition using multiple star trackers.
  7. Damilano Patrice,FRX, Control of the attitude of a satellite in low orbit involving solar acquisition.
  8. Wu Yeong-Wei Andy ; Didinsky Garry ; Hein Douglas H., Enhanced stellar attitude determination system.
  9. Fowell Richard A. ; Yocum John F., Gyroscopic calibration methods for spacecraft.
  10. David D. Needelman ; Yeong-Wei A. Wu ; Rongsheng Li ; William L. Burkett, Jr., Lost-in-space stellar attitude acquisition using multiple star trackers.
  11. Frisch Eberhard (Unterhaching DEX), Measuring arrangement for determining the attitude of an earth satellite.
  12. Wu Yeong-Wei A. ; Hein Douglas H. ; Didinsky Garry ; Augenstein David L., Method and apparatus for controlling spacecraft attitude with rotational star trackers.
  13. Didinsky Garry ; Wu Yeong-Wei Andy, Method and apparatus for estimating attitude sensor bias in a satellite.
  14. Barker Lee A., Method and apparatus for generating orbital data.
  15. Wilcox Jack E. (Dekalb IN), Method and apparatus for radiometer star sensing.
  16. Conley Peter L. (Woodland Hills CA), Method and apparatus for rotational rate determination using a stellar reference.
  17. Sasaki Toshiro (Yokohama TX JPX) Kosaka Michitaka (Austin TX) Mohri Satoshi (Tokyo JPX) Kawano Katsumi (Fuchu JPX) Miyamoto Shoji (Kawasaki JPX), Method and apparatus of determining an attitude of a satellite.
  18. Surauer Michael,DEX ; Fichter Walter,DEX ; Zentgraf Peter,DEX, Method for controlling the attitude of a three-axis stabilized, earth oriented bias momentum spacecraft.
  19. Binghoff Albert (Holzkirchen DEX) Herbst Heinrich (Steinhring DEX) Kaffer Luitpold (Mnchen DEX), Method for determining the position of a space vehicle by means of star acquisition and star identification.
  20. Bender Douglas J. (Redondo Beach CA) Parks Thomas R. (Redondo Beach CA) Brozenec Thomas F. (El Segundo CA), Method of attitude determination using earth and star sensors.
  21. Choate William Clay (Dallas TX) Talluri Rajendra K. (Austin TX), Method of inferring sensor attitude through multi-feature tracking.
  22. Choate William Clay ; Talluri Rajendra K., Method of inferring sensor attitude through multi-feature tracking.
  23. Barker Lee A., Methods for using satellite state vector prediction to provide three-axis satellite attitude control.
  24. Froeberg Peter L. ; Kremer Greg T., Navigation system and orientation system incorporating solar sighting.
  25. Mickelson Wilmer A., Navigation system for spinning projectiles.
  26. Kamel Ahmed, Precise spacecraft camera image navigation and registration.
  27. Cope Paul E. G. (Fareham GB2), Satellite attitude control.
  28. Basuthakur Sibnath ; Ibanez-Meier Rodrigo ; Daniel Brian, Satellite cluster attitude/orbit determination and control system and method.
  29. Fowell Richard A. ; Tanner Thomas M., Satellite spin vector control with sun sensor.
  30. Holmes Thomas Joseph ; Hur-Diaz Sun ; Gamble Donald ; Higham John, Simplified onboard attitude control based on star sensing.
  31. Li Rongsheng ; Wu Yeong-Wei A. ; Hein Douglas H. ; Didinsky Garry, System and method for correcting star tracker low spatial frequency error in stellar-inertial attitude determination systems.
  32. Falbel Gerald, Three axis attitude readout system for geosynchronous spacecraft.
  33. Falbel Gerald (Stamford CT), Three axis earth/star sensor.
  34. Paluszek Michael A. (Lawrenceville Township ; Mercer County NJ), Three-axis spacecraft attitude control using polar star sensor.
  35. Fritz Teresa A. ; Lee James C. ; Pledger Douglas B., Wide field of view sensor with diffractive optic corrector.

이 특허를 인용한 특허 (23)

  1. Goelet, John, Airship having a cargo compartment.
  2. Goelet, John, Airship including aerodynamic, floatation, and deployable structures.
  3. Goelet, John, Airship including aerodynamic, floatation, and deployable structures.
  4. Goodzeit, Neil E.; Weigl, Harald J., Autonomous gyro temperature calibration.
  5. Goelet, John; Kapitan, Loginn; Hochstetler, Ron, Cargo airship.
  6. Weiss, Avishai; Di Cairano, Stefano; Walsh, Alex, Concurrent station keeping, attitude control, and momentum management of spacecraft.
  7. Rosenwinkel, Alan M., Geoposition determination by starlight refraction measurement.
  8. Weinberg, Marc S.; Bancu, Mirela G.; Bickford, James A.; Bernstein, Jonathan J.; Elliott, Richard, High performance sensors and methods for forming the same.
  9. Kamel, Ahmed; Sheffield, Jonathan; McLaren, Mark, Image navigation method using parametric systematic error correction.
  10. Brady,Tye M.; Kourepenis,Anthony S.; Wyman, Jr.,William F., Integrated inertial stellar attitude sensor.
  11. Balaskovic, Pierre, Lenticular airship and associated controls.
  12. Balaskovic, Pierre, Lenticular airship and associated controls.
  13. Balaskovic, Pierre, Lenticular airship and associated controls.
  14. Horning,Robert D.; Weber,Mark W.; Johnson,Burgess R., MEMS device with thinned comb fingers.
  15. Johnson, William M., Method and computer program product for controlling inertial attitude of an artificial satellite by applying gyroscopic precession to maintain the spin axis perpendicular to sun lines.
  16. Johnson, William M., Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor.
  17. Fischer, Horst-Dieter; Chemnitz, Joachim, Process for determining the position of a spacecraft with the aid of a directional vector and a total angular momentum measurement.
  18. Litchfield,Mark H.; Delude,David; McCormack,Joseph, System and method for determining orientation based on solar positioning.
  19. Litchfield,Mark H.; Delude,David; McCormack,Joseph, System and method for determining orientation based on solar positioning.
  20. Goelet, John, System and method for solar-powered airship.
  21. Goelet, John, System and method for varying airship aerostatic buoyancy.
  22. Johnson, William M., System for determing and controlling inertial attitude, for navigation, and for pointing and/or tracking for an artificial satellite employing and optical sensor and a counter-rotational optical mirror, and terrestrial-based testing system for assessing inertial attitude functions of an artificial satellite.
  23. Johnson, William M., Systems and methods for spectroscopy using opposing laser beams.