$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

High strength reactive materials

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) C08K-003/08   
미국특허분류(USC) 524/439; 524/440; 524/441
출원번호 US-0789479 (2001-02-21)
발명자 / 주소
출원인 / 주소
대리인 / 주소
    TraskBritt
인용정보 피인용 횟수 : 14  인용 특허 : 6
초록

In this method for making a sintered reactive material, fuel particles are blended with a polymer matrix comprising at least one fluoropolymer in an inert organic media to disperse the fuel particles in the polymer matrix and form a reactive material. The reactive material is dried and pressed to obtain a shaped pre-form, which is sintered in an inert atmosphere to form the sintered reactive material. By sintering in an inert atmosphere, the sintered reactive material may include reactive metals and/or metalloids in a non-oxidized state. The resulting si...

대표
청구항

In this method for making a sintered reactive material, fuel particles are blended with a polymer matrix comprising at least one fluoropolymer in an inert organic media to disperse the fuel particles in the polymer matrix and form a reactive material. The reactive material is dried and pressed to obtain a shaped pre-form, which is sintered in an inert atmosphere to form the sintered reactive material. By sintering in an inert atmosphere, the sintered reactive material may include reactive metals and/or metalloids in a non-oxidized state. The resulting si...

이 특허를 인용한 특허 피인용횟수: 14

  1. Nielson, Daniel B.; Truitt, Richard M.; Ashcroft, Benjamin N.. Articles of ordnance including reactive material enhanced projectiles, and related methods. USP2018059982981.
  2. Brothers, Alan H.. Energetic materials using amorphous metals and metal alloys. USP2017029573858.
  3. Kneisl,Philip. Hi-temp explosive binder. USP2006016989064.
  4. Nielson,Daniel B.; Tanner,Richard L.; Lund,Gary K.. High strength reactive materials and methods of making. USP2007127307117.
  5. Nielson, Daniel B.; Truitt, Richard M.; Rasmussen, Nikki. Low temperature, extrudable, high density reactive materials. USP201602RE45899.
  6. Ashcroft, Benjamin N.; Nielson, Daniel B.; Doll, Daniel W.. Reactive compositions including metal. USP2013018361258.
  7. Ashcroft, Benjamin N.; Nielson, Daniel B.; Doll, Daniel W.. Reactive compositions including metal. USP2011128075715.
  8. Nielson, Daniel B.; Ashcroft, Benjamin N.; Doll, Daniel W.. Reactive material compositions and projectiles containing same. USP2013108568541.
  9. Nielson, Daniel B.; Truitt, Richard M.; Poore, Rochelle D.; Ashcroft, Benjamin N.. Reactive material compositions, shot shells including reactive materials, and a method of producing same. USP2011077977420.
  10. Nielson, Daniel B.; Truitt, Richard M.; Ashcroft, Benjamin N.. Reactive material enhanced projectiles and related methods. USP2012028122833.
  11. Nielson, Daniel B.; Truitt, Richard M.; Ashcroft, Benjamin N.. Reactive material enhanced projectiles and related methods. USP2015089103641.
  12. Stecher, Frederick P.; Truitt, Richard M.. Reactive material enhanced projectiles, devices for generating reactive material enhanced projectiles and related methods. USP2013058443731.
  13. Stecher, Frederick P.; Truitt, Richard M.. Reactive material enhanced projectiles, devices for generating reactive material enhanced projectiles and related methods. USP2017069683821.
  14. Truitt, Richard M.; Nielson, Daniel B.; Ashcroft, Benjamin N.; Braithwaite, Paul C.; Rose, Michael T.; Cvetnic, Mark A.. Weapons and weapon components incorporating reactive materials. USP2009117614348.