국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0194386
(2002-07-12)
|
발명자
/ 주소 |
|
인용정보 |
피인용 횟수 :
35 인용 특허 :
8 |
초록
▼
Axial flow devices using rigid spiral band profiled blade catenaries attached variably along and around an axially elongated profiled hub, of axially oriented profile section sequences 75 mapped relative to truncated cones-of-generation. Upon rotation and lubricity-masked progression through axial p
Axial flow devices using rigid spiral band profiled blade catenaries attached variably along and around an axially elongated profiled hub, of axially oriented profile section sequences 75 mapped relative to truncated cones-of-generation. Upon rotation and lubricity-masked progression through axial planes-of-shear, this time-domain sequence travels in 2-dimensional axial-datum-plane-relative path-excursions and ejects frictional adhesions via anguillar reverse vortex street thrust due to an after-body accelerating wave shape-sequence 48. This guides bound vortex pressures at linear path-velocity substantially parallel to the collective plane-of-shear, conferring higher differential pressures through path-vector-addition, improved force-vector orientation, extended laminar flows, lower form drag and tip vorticity. As a wind turbine, path-vectors are added to inflow, ducting an increased mass flow inward for increased power extraction per diameter. As a propeller, path-vector-subtraction guides the wave front flight-path-transverse, allowing higher flight velocities and improving thrust-per-torque through enhanced force vectors and mass flow rates.
대표청구항
▼
1. A method of inclined-plane-based boundary layer transport implemented by forming discretely oriented convexities and concavities of such variations of angle to bulk fluid flow upon the rear working surfaces of that class of rotor blades that have the shape of rigid continuous profiled spiral or r
1. A method of inclined-plane-based boundary layer transport implemented by forming discretely oriented convexities and concavities of such variations of angle to bulk fluid flow upon the rear working surfaces of that class of rotor blades that have the shape of rigid continuous profiled spiral or ring bands, implemented by adding progressive phase-angle fragmental increments-of-amplitude to progressive axial-plane-relative profile coordinates as can effect such surface-to-axial plane chord-wise progressive variation of change of inclination as can accelerate fluid, the shape of which is characterized by two axial-plane-relative isocline parabolas of fluid acceleration, as well as by a constant subtended angle of axial azimuth connecting successive azimuth-increment axial-section maxima of convexity, said curves and angle that together evidence such variable convexity and together comprising the steps of:a) translating the coordinates of a conventional fluid dynamic profile tail section envelope chord-wise coordinates into logarithmic coordinates defining exponential wavelength expansion isocline control points, b) constructing an amplitude expansion logarithmic spiral to offset logarithmic decrement viscous dissipation, then its corresponding parabolas of amplitude maxima, then envelope construction means and envelope reconstruction cubic spline c) progressively remapping the individual phase angle axial profile section envelope collectively into a multiplicity of individual integral multiple incremental phase angle fragments as can define a single periodic function cycle d) associating said progressive individual integral coordinate sets with the front element coordinate set of said spiral band blade such that for every increment of fundamental subtended angular change of axial azimuth of said front element, the next numbered phase angle increment-of-generation of each successive associated individual phase angle fragment shall be an integral multiple of the front element coordinate set angular change e) connecting the envelope construction rays with tangential and axial cubic spline interpolation curves or their functional equivalents to establish a continuous physical envelope shape f) constructing a plurality of said blades according to these coordinates and attaching them at various locations of a hub and such fixed support that allows said blade assembly to rotate whereby, upon rotation of the resulting continuously shape-sequenced bands through the axial shear plane multiplicity, the body-relative fluid acceleration caused by the body-relative isocline acceleration attending anguillar or carangiform propulsion of aquatic creatures is substantially duplicated through the mechanism of spaced-quadrature vector-coupling and as such, useful for the expulsion of boundary layer accumulations as well as for limiting spanwise flow, turbulence, and undulation of reaction mass.2. A method of boundary layer control as in claim 1 except that the compound periodic function progressively remaps the axial profile section upper and lower envelope individually using differential starting helix angles and acceleration parabolas to result in a multiplicity of individual incremental phase angle fragments as can define a single periodic function cycle and associating said individual envelope coordinate sets with the front element coordinate set of said spiral band blade such that for every integral increment of angular change of numbered azimuth plane-of-association of said front element, the numbered phase angle increment-of-generation of the individual phase angle fragment shall be an integral multiple thereof,whereby, upon rotation of the resulting spiraling bands, the expulsion of boundary layer accumulations will result with minimum pulsation, noise and undulation. 3. A method of boundary layer control as in claim 1 except that the compound periodic function is a half-rectified square wave or saw tooth wave function of such frequency as to be inaudible, that progressively remaps the axial profile section upper and lower envelope into convexities only using discrete profile-relative suction and pressure side differential starting helix angles and acceleration parabolaswhereby upon rotation of the resulting spiraling bands, the expulsion of boundary layer accumulations will incur minimum expense of manufacture, as well as minimum pulsation, noise and undulation. 4. A rotor of manufacture that can beneficially interchange kinetic energy with axial flows, consisting of a plurality of blades, each of which form continuously profiled, rigid spiral or ring bands, the progressive forward-portion axial sections of which have fixed chord-axis-wise orientation to the axial surface inclination of coaxial truncated cones-of-generation along said cones' progressive increments of axial azimuth and co-latitude coordinates, each said spiral bands being attached at azimuth variations around and axial location along an elongated aerodynamic hub of body-of-revolution that is itself attached to fixed supports which enable it to rotate, said continuously profiled bands combining means to eject boundary layer accumulations through tail section variations of disposition of convexity and concavity governed by a periodic function, such variations of convexity physically delineated by characteristic fluid-flow-relative expanding angles of isocline parabolas and axial-plane-relative angles of parabolas of maxima of chord-normal convexity, as well as by a subtended coaxial angle of constant azimuth increment defining the disposition of successive axial section maxima of convexity,whereby such rotors can efficiently interchange fluid momentum change with an impulse of tuning force generated by deflecting mass flows rates with low frictional dissipation and limited spanwise flow. 5. A rotor of manufacture according to claim 4, wherein said spiral band blades are attached at one end to an axial location along the midsection of said elongated aerodynamic body-of-revolution that is itself attached to fixed supports which enable it to rotate and at the other end at an azimuth variation of a large-diameter coaxial annular peripheral profiled rim-band, itself also endowed with said tail-section variable convexity, said rim being in turn supported by tensile spokes upon the nose region of said rotative aerodynamic body-of-revolution,whereby such a rotor will capture the momentum attending greater than working diameter mass air flows quietly, for modest expenditure of material resource. 6. A rotor of manufacture according to claim 4 wherein said spiral band blades tail section working surface contains continuously variable corrugations of convexity only, as defined by said collective parabolas of isoclines, resulting in side-differential isocline parabolas attending the high pressure and low pressure sides of working surface tail section and resulting in discrete inclinations of convexity onlywhereby ease of manufacture is added to aforesaid advantage. 7. A rotating axial flow duct-rotor of manufacture, combining the function of controlling stream tube convergence or divergence with the function of acceleration or deceleration of axial flow as well as with the function of boundary layer transport, consisting of a plurality of blades that individually form continuously profiled, rigid spiral or ring bands, the progressive axial forward sections of which have fixed chord-axis-wise orientation to the axial-plane-relative surface inclination of coaxial truncated conoids-of-generation along said conoids' progressive increments of azimuth and axial co-latitude coordinates, said spiral bands being attached at azimuth variations around and axial location along an elongated aerodynamic body of revolution that is itself attached to fixed supports which enable it to rotate, allowing said rotating blade plurality's outer catenaries to progressively sweep out the outlines of a requisite duct shape, said continuously profiled bands combining means to eject boundary layer accumulations through tail section variations of convexity and concavity governed by a periodic function and said convexities physically delineated by characteristic helix-relative expanding isocline parabolas and axial-plane-relative parabolas of maxima of chord-normal convexity, as well as by a subtended axial angle of constant axial azimuth increment connecting said successive axial section maxima of convexity,whereby such a duct can impart measured radial accelerations or decelerations to converging or diverging peripheral flows and can therefore dispense with the expense and drag of a fixed duct, entrain greater mass flow rates per diameter of operation by reducing unwanted fluid tube expansion or contraction and thus can function to reduce or increase tip velocity, function to reduce frictional dissipation as well as function to limit spanwise flow due to planform variable sweep.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.