국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0109294
(2005-04-19)
|
등록번호 |
US-7371267
(2008-05-13)
|
발명자
/ 주소 |
- Pipkorn,Howard
- Ugargol,Kal
|
출원인 / 주소 |
|
대리인 / 주소 |
Patterson, Thuente, Skaar & Christensen, P.A.
|
인용정보 |
피인용 횟수 :
7 인용 특허 :
21 |
초록
▼
An improved filter support structure for supporting filter media. The support structure includes two sections removably coupled together with an improved coupling assembly. The first section has a cross section presenting a first width spaced apart from a second width, the second width being less t
An improved filter support structure for supporting filter media. The support structure includes two sections removably coupled together with an improved coupling assembly. The first section has a cross section presenting a first width spaced apart from a second width, the second width being less than the first width. The coupling assembly includes an element carried by the second section, and presents an engagement width that is greater than the second width and less than or equal to the first width such that the element may be shiftably received within the first section at the first width, and can be removably engaged at the second width.
대표청구항
▼
The invention claimed is: 1. In a filter cage having at least two elongate cage sections, each with opposite first and second looped ends, an intermediate body portion, and a connector framework, the intermediate body portion comprising a reticulation of structural members enclosing a flow passagew
The invention claimed is: 1. In a filter cage having at least two elongate cage sections, each with opposite first and second looped ends, an intermediate body portion, and a connector framework, the intermediate body portion comprising a reticulation of structural members enclosing a flow passageway extending along a longitudinal axis between the first and second looped ends on a first side thereof, the reticulation having a structure defining openings for fluid communication between the flow passageway and a second side opposite the first side, the connector framework adapted to releasably connect the two cage sections, the connector framework comprising: at least one stiffening member operably attached to, and extending transversely to, the flow passageway between at least two circumferentially-spaced locations on the reticulation, the stiffening member sized and shaped to present a substantially unobstructed flow path through the flow passageway; and at least two guides disposed substantially symmetrically on, secured to and projecting outwardly from the first looped end to terminate in an engagement head remote from the looped end, the guides shaped and configured to be concurrently inserted through either the first and second looped ends into the flow passageway of the second cage, such that when the second cage is in a connected position with respect to the first cage, the guides extend a predefined length inwardly into the flow passageway, disposing the engagement head in a predefined relationship with the stiffening member, the engagement head being shaped and dimensioned to resiliently bear upon either the reticulation or the stiffening member or both, at a plurality of contact locations to hold the first and second cage sections securely and rigidly connected and positioned with the flow passageways thereof in communication and in substantial axial alignment, the stiffening member being sized and shaped to exert a resisting bias to hold the engagement head tightly against either the reticulation or the stiffening member or both. 2. The filter cage of claim 1 wherein at least one of the at least two guides comprises a single resilient member with opposed first and second ends, an arcuately-curved intermediate portion interconnecting first-and second-spaced side legs extending toward the first looped end to terminate at the first and second ends, respectively, each of said first and second ends secured to the first looped end, spaced one from the other. 3. The filter cage of claim 1 wherein the at least one stiffening member is a loop located within the flow passageway and secured at a plurality of spaced locations on the first side of the reticulation, the guide provided with a groove dimensioned and located to grip said stiffening member against displacement of the guide relative to the stiffening member when the second cage is placed in the connected position with respect to the first cage. 4. The filter cage of claim 2 wherein the guide includes a bridging portion interconnecting opposing ends of the arcuately-curved portion separated by a first width to the first and second legs spaced a second width less than the first width, the bridging portion providing an abutment substantially transverse to the longitudinal axis, the engagement head riding along the first side of the reticulation as the second cage is forced into progressive engagement with the first cage, the abutment spaced and shaped to fit over and engage at least one structural member in the reticulation of the second cage, with said structural member in abutting contact with said bridging portion against displacement of the structural member relative to the bridging portion when the second cage is in connected position with respect to the first cage. 5. The filter cage of claim 1 wherein the at least one stiffening member is a loop located within the flow passageway and secured at a plurality of spaced locations on the second side of the reticulation, the guide having a shape that includes an abutment surface substantially transverse to the longitudinal axis and facing the first looped end, the abutment surface shaped to fit over the stiffening member of the second cage to inhibit displacement relative thereto when the second cage is in connected position with respect to the first cage. 6. The filter cage of claim 1 wherein the at least one stiffening member is an oblong loop with an inner peripheral edge delimiting an opening therein and having a major axis and a minor axis, the stiffening member being positioned within the flow passageway with the major axis extending transversely to the longitudinal axis, and operably secured to diametrically-opposed locations on the first side of the reticulation of the second cage. 7. The filter cage of claim 6 wherein the engagement head comprises a substantially planar curve adapted to be shiftably received into the opening delimited by the inner peripheral edge along a direction substantially perpendicular to the major and minor axes and in a plane containing the curve and the minor axis, the curve shaped to have a maximum outside extent exceeding a length of the minor axis requiring the guide be urged into contact with the stiffening member to allow the curve to deformably wedge though the opening delimited by the peripheral edge as the second cage is progressively urged into connected position with respect to the first cage, whereupon the curve snap-fittingly engages the stiffening member against displacement relative thereto, thus maintaining the second cage in the connected position with respect to the first cage. 8. The filter cage of claim 7, wherein the at least one stiffening member comprises first and second oblong loops, each having a major axis extending between and operably attached to substantially diametrically-opposed locations on the peripheral edge with a first one of the major axes disposed substantially perpendicular to the other, each oblong loop further having an inner peripheral edge delimiting an opening therein, the cage section equipped with first and second opposed pairs of guides symmetrically disposed on the first looped end, the first and second opposed pair of guides receivable within first and second openings delimited by the inner peripheral edges of first and second oblong loops, respectively. 9. The filter cage of claim 8 wherein the two oblong loops are secured together by spot welding at locations where the loops intersect. 10. The filter cage of claim 9 wherein portions of first and second loops substantially extending within areas circumscribed by second and first inner peripheral edges, respectively, are removed so as to provide a substantially unobstructed flow path Through the flow passageway. 11. The filter cage of claim 1 wherein the reticulation comprises a wire grid formed of a plurality of spaced, generally parallel cage wires extending along a direction substantially parallel to the longitudinal axis interconnected by spaced, generally parallel cage wires extending circumferentially. 12. A guide assembly for maintaining first and second cage sections in a connected position with respect to each other to form a filter cage, wherein each cage comprises opposite first and second looped ends, and an intermediate body portion; the intermediate body portion comprising a reticulation of structural members enclosing a flow passageway extending parallel to the longitudinal axis between the first and second looped ends on a first side thereof, the reticulation having a structure defining openings for fluid communication between the flow passageway and a second side of the reticulation opposite the first side, the guide assembly comprising: at least one stiffening member operably attached to and extending transversely to the flow passageway between at least two circumferentially-spaced locations on the reticulation, the stiffening member sized and shaped to present a substantially unobstructed flow path through the flow passageway; a plurality of longitudinal members, each longitudinal formed from a single and continuous piece of resilient material bent into an elongated configuration presenting opposed first and second partially open loops configured into first and second engagement heads at opposed first and second ends of the guide assembly, and at least one segment of the resilient material extending between the first partially open loop to the second partially open loop; and at least one retaining member extending between and rigidly secured to the plurality of longitudinal members to maintain the plurality of longitudinal members disposed in a predefined angular relationship to each other, each of the first and second ends of the guide assembly shaped and configured to be inserted through the looped ends into the flow passageway of the first and second cages such that when the first and second cages are in connected position with respect to each other, the first end of the guide assembly is releasably received within one of the first and second cages and the second end of the guide assembly is releasably received within the other of the second and first cages, at least first and second spaced portions of the guide assembly shaped and dimensioned to removably engage the first and second cage sections respectively to maintain the first and second cage sections securely and rigidly interfitted and positioned with the flow passageways thereof in communication and in substantial axial alignment. 13. The guide assembly of claim 12 wherein one or more of the longitudinal members is provided with a structure defining at least one groove dimensioned and located to grip the stiffening member against displacement of the guide assembly relative to the stiffening member when the cages are placed in the connected position with respect to each other. 14. The guide assembly of claim 12 wherein one or more of the longitudinal members is provided with a structure defining at least one groove dimensioned and located to grip at feast one structural member of the reticulation against displacement of the guide assembly relative to the reticulation when the cages are placed in the connected position with respect to each other. 15. The guide assembly of claim 12 wherein the reticulation comprises a wire grid formed of a plurality of spaced, generally parallel cage wires extending along a direction substantially parallel to the longitudinal axis interconnected by spaced, generally parallel cage wires extending circumferentially to the longitudinal axis, the engagement head shaped and dimensioned to overlie and resiliently bear upon one or more of the longitudinally and circumferentially extending cage wires against relative motion thereto, to thereby hold the first and second cage sections securely and rigidly connected and positioned with the flow passageways thereof in communication and in substantial axial alignment. 16. The guide assembly of claim 12, wherein the at least one stiffening member is located within the flow passageway of the cage and secured at a plurality of angularly-spaced locations on the first side of the reticulation, such tat when the cages are in connected position with respect to each other, the guides extend a predefined length inwardly into the flow passageways, disposing the engagement heads in a predefined engagement relationship with the stiffening members against displacement of the engagement heads relative to the stiffening members to maintain the cage sections in connected position with respect to each other. 17. The guide assembly of claim 16, wherein the at least one stiffening member is an oblong loop with an inner peripheral edge delimiting an opening therein and having a major axis and a minor axis, the stiffener is positioned within the flow passageway with the major axis extending transversely to the longitudinal axis between, and operably secured to substantially diametrically-opposed locations on the first side of the reticulation of the second cage. 18. The guide assembly of claim 17 wherein each engagement head comprises a substantially planar curve adapted to be shiftably received into the opening delimited by the inner peripheral edge along a direction substantially perpendicular to the major and minor axes and in a plane containing the curve and the minor axis, the curve shaped to have a maximum outside extent exceeding a length of the minor axis requiring the guide assembly be non-rotatably urged into contact with the stiffening member to force the curve to deformably wedge through the opening delimited by the peripheral edge as the first and second cages are progressively urged into connected position with respect to each other, whereupon the curve snap-fittingly engages the stiffening member against displacement of the curve relative to the stiffening member, thus maintaining the first and second cages in connected position with respect to each other. 19. The filter cage as claimed in claim 1, wherein the engagement head is a loop having a shape selected from a group consisting of: rabbit ear-shaped, keyhole-shaped, serpent head-shaped, arrowhead-shaped, hairpin-shaped and loop-shaped. 20. The guide assembly as claimed in claim 12, wherein each engagement head has a shape selected from a group consisting of: rabbit ear-shaped, keyhole-shaped, serpent head-shaped, arrowhead-shaped, hairpin-shaped and loop-shaped.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.