$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Nanotechnology neural network methods and systems 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G06E-001/00
  • G06E-003/00
  • G06F-015/18
  • G06G-007/00
출원번호 US-0735934 (2003-12-15)
등록번호 US-7426501 (2008-09-16)
발명자 / 주소
  • Nugent,Alex
출원인 / 주소
  • Knowntech, LLC
대리인 / 주소
    Lopez,Kermit D.
인용정보 피인용 횟수 : 93  인용 특허 : 51

초록

A physical neural network is disclosed, which includes a connection network comprising a plurality of molecular conducting connections suspended within a connection gap formed between one or more input electrodes and one or more output electrodes. One or more molecular connections of the molecular c

대표청구항

The embodiments of an invention in which an exclusive property or right is claimed are defined as follows: 1. An electromechanical neural network system based on nanotechnology, comprising: an adaptive synaptic element comprising a plurality of nanoconductors suspended and free to move about in a l

이 특허에 인용된 특허 (51)

  1. Francisco Jose Ayala, Adaptive neural learning system.
  2. Smith John Stephen ; Yeh Hsi-Jen J. ; Hadley Mark A. ; Verma Ashish K., Apparatus for fabricating self-assembling microstructures.
  3. Gorelik Vladimir A., Apparatus for simulating a biological neuron.
  4. Works George A. (San Diego CA) Hicks William L. (San Diego CA) Kasbo Richard L. (San Diego CA) Muenchau Ernest E. (San Diego CA) Deiss Stephen R. (Encinitas CA), Array processor.
  5. Walter L. Brown ; Sungho Jin ; Wei Zhu, Article comprising vertically nano-interconnected circuit devices and method for making the same.
  6. DeYong Mark R. (Las Cruces NM) Findley Randall L. (Austin TX) Eskridge Thomas C. (Las Cruces NM) Fields Christopher A. (Rockville MD), Asynchronous temporal neural processing element.
  7. Uchikawa Yoshiki,JPX ; Furuhashi Takeshi,JPX ; Yamaguchi Masashi,JPX ; Fujime Yoko,JPX, Autonomic system for updating fuzzy neural network and control system using the fuzzy neural network.
  8. Kuekes Philip J. ; Williams R. Stanley, Demultiplexer for a molecular wire crossbar network (MWCN DEMUX).
  9. Ginosar Ran,ILX ; Weinberg Nitzan,ILX, Digital hardware architecture for realizing neural network.
  10. Huang Shi-Fong,TWX, Digital neural node.
  11. Jim-Shih Liaw ; Theodore W. Berger, Dynamic synapse for signal processing in neural networks.
  12. Jackson, Thomas N.; Mayer, Theresa, Electric field assisted assembly process.
  13. Forouhi Abdul Rahim (San Jose CA) Hamdy Esmat Z. (Fremont CA) Hu Chenming (Alamo CA) McCollum John L. (Saratoga CA), Electrically programmable antifuse.
  14. McHardy John (Westlake Village CA) Townsend Carl W. (Los Angeles CA) Higley Lin R. (Laguna Hills CA) Ludwig Frank A. (Rancho Palos Verdes CA), Electrochemical synapses for artificial neural networks.
  15. Rogers John A. ; Jackman Rebecca J. ; Whitesides George M., Fabrication of small-scale cylindrical articles.
  16. Bose Chinmoy Bhusan (Green Brook NJ), Feedback process control using a neural network parameter estimator.
  17. Cheng-Jer Yang TW; Fu-Kuo Tan-Tai TW; Huang-Chung Cheng TW, Low dielectric constant nanotube.
  18. Nandakishore Kambhatla ; Dimitri Kanevsky ; Wlodek Wlodzimierz Zadrozny, Method and apparatus for executing neural network applications on a network of embedded devices.
  19. Clark Noel A. (Boulder CO) Douglas Kenneth (Boulder CO) Rothschild Kenneth J. (Newton MA), Method for parallel fabrication of nanometer scale multi-device structures.
  20. Connolly Dennis Michael, Method of chemically assembling nano-scale devices.
  21. Phaedon Avouris ; Philip G. Collins ; Richard Martel, Methodology for electrically induced selective breakdown of nanotubes.
  22. Kuekes Philip J. ; Williams R. Stanley ; Heath James R., Molecular wire crossbar memory.
  23. Kuekes Philip J. ; Williams R. Stanley ; Heath James R., Molecular-wire crossbar interconnect (MWCI) for signal routing and communications.
  24. James C. Ellenbogen, Monomolecular electronic device.
  25. Chen Yong ; Williams R. Stanley, Nanoscale patterning for the formation of extensive wires.
  26. Yong Chen ; R. Stanley Williams, Nanoscale patterning for the formation of extensive wires.
  27. Otto Z. Zhou ; Bo Gao, Nanotube-based high energy material and method.
  28. Jackie Y. Ying ; Zhibo Zhang ; Lei Zhang ; Mildred S. Dresselhaus, Nanowire arrays.
  29. Castelaz Patrick F. (Yorba Linda CA) Mills Dwight E. (La Verne CA) Woo Steven C. (Stanford CA) Jmaev Jack I. (La Habra CA) Henrikson Tammy L. (Fullerton CA), Neural engine for emulating a neural network.
  30. Arima Yutaka (Hyogo-ken JPX), Neural network expressing apparatus including refresh of stored synapse load value information.
  31. Neely William Shields, Neural network signal processor for magnetic storage channels.
  32. Colak Sel B.,NLX, Neural network using inhomogeneities in a medium as neurons and transmitting input signals in an unchannelled wave patte.
  33. Tomabechi Hideto,JPX, Neural network, a method of learning of a neural network and phoneme recognition apparatus utilizing a neural network.
  34. John C. Carson ; Christ H. Saunders, Neural processing module with input architectures that make maximal use of a weighted synapse array.
  35. Nunally Patrick O. (Diamond Bar CA), Neural processor element.
  36. Steimle Andre,FRX ; Tannhof Pascal,FRX ; Paillet Guy,FRX, Neural semiconductor chip and neural networks incorporated therein.
  37. Kozicki Michael N. ; West William C., Programmable metallization cell structure and method of making same.
  38. Kozicki Michael N. ; West William C., Programmable metallization cell structure and method of making same.
  39. Kozicki Michael N. ; West William C., Programmable metallization cell structure and method of making same.
  40. Kozicki Michael N. ; West William C., Programmable metallization cell structure and method of making same.
  41. Kozicki, Michael N.; West, William C., Programmable sub-surface aggregating metallization structure and method of making same.
  42. Mashiko Koichiro (Hyogo JPX), Semiconductor neural network and operating method thereof.
  43. Mashiko Koichiro (Hyogo JPX), Semiconductor neural network including photosensitive coupling elements.
  44. John Gerard Lavin ; Harry Vaughn Samuelson, Single-wall carbon nanotube-polymer composites.
  45. Tapang Carlos C. (Portland OR), Sleep refreshed memory for neural network.
  46. Ishikawa Akira, Spherical shaped semiconductor integrated circuit.
  47. Reed Mark A. (New Haven CT), Sub-nanoscale electronic systems and devices.
  48. Shakesheff, Kevin; Patel, Nikin; Cannizzaro, Scott M.; Langer, Robert S., Surface coating spatially controlled patterns.
  49. Alex Freeman, System and method for plasma etch on a spherical shaped device.
  50. Randall John N. ; Frazier Gary A., Universal quantum dot logic cell.
  51. Schulz, Robert; Boily, Sabin; Joly, Alain; Van Neste, Andre; Alamdari, Houshang, Varistors based on nanocrystalline powders produced by mechanical grinding.

이 특허를 인용한 특허 (93)

  1. Ponulak, Filip, Adaptive critic apparatus and methods.
  2. Izhikevich, Eugene; Sinyavskiy, Oleg; Passot, Jean-Baptiste, Adaptive predictor apparatus and methods.
  3. Izhikevich, Eugene; Sinyavskiy, Oleg; Passot, Jean-Baptiste, Adaptive predictor apparatus and methods.
  4. Laurent, Patryk; Passot, Jean-Baptiste; Wildie, Mark; Izhikevich, Eugene M., Adaptive robotic interface apparatus and methods.
  5. Laurent, Patryk; Passot, Jean-Baptiste; Wildie, Mark; Izhikevich, Eugene M.; Polonichko, Vadim, Adaptive robotic interface apparatus and methods.
  6. Nugent, Alex, Anti-hebbian and hebbian computing with thermodynamic RAM.
  7. Sinyavskiy, Oleg; Polonichko, Vadim, Apparatus and methods for backward propagation of errors in a spiking neuron network.
  8. Meier, Philip; Passot, Jean-Baptiste; Ibarz Gabardos, Borja; Laurent, Patryk; Sinyavskiy, Oleg; O'Connor, Peter; Izhikevich, Eugene, Apparatus and methods for control of robot actions based on corrective user inputs.
  9. Meier, Philip; Passot, Jean-Baptiste; Ibarz Gabardos, Borja; Laurent, Patryk; Sinyavskiy, Oleg; O'Connor, Peter; Izhikevich, Eugene, Apparatus and methods for control of robot actions based on corrective user inputs.
  10. Ponulak, Filip, Apparatus and methods for gating analog and spiking signals in artificial neural networks.
  11. Sinyavskiy, Oleg; Ponulak, Filip, Apparatus and methods for generalized state-dependent learning in spiking neuron networks.
  12. Ponulak, Filip; Kazemi, Moslem; Laurent, Patryk; Sinyavskiy, Oleg; Izhikevich, Eugene, Apparatus and methods for haptic training of robots.
  13. Ponulak, Filip; Kazemi, Moslem; Laurent, Patryk; Sinyavskiy, Oleg; Izhikevich, Eugene, Apparatus and methods for haptic training of robots.
  14. Sinyavskiy, Oleg; Passot, Jean-Baptiste; Izhikevich, Eugene, Apparatus and methods for online training of robots.
  15. Passot, Jean-Baptiste; Sinyavskiy, Oleg; Izhikevich, Eugene, Apparatus and methods for operating robotic devices using selective state space training.
  16. Szatmary, Botond; Grotmol, Oyvind; Izhikevich, Eugene; Sinyavskiy, Oleg, Apparatus and methods for programming and training of robotic devices.
  17. Ponulak, Filip; Sinyavskiy, Oleg, Apparatus and methods for reinforcement learning in artificial neural networks.
  18. Ponulak, Filip; Passot, Jean-Baptiste; Izhikevich, Eugene; Coenen, Olivier, Apparatus and methods for reinforcement-guided supervised learning.
  19. Ponulak, Filip; Sinyavskiy, Oleg, Apparatus and methods for state-dependent learning in spiking neuron networks.
  20. Passot, Jean-Baptiste; Laurent, Patryk; Izhikevich, Eugene, Apparatus and methods for training of robotic control arbitration.
  21. Smith, Andrew T.; Polonichko, Vadim, Apparatus and methods for training of robots.
  22. Grotmol, Oyvind; Sinyavskiy, Oleg, Apparatus and methods for training path navigation by robots.
  23. Grotmol, Oyvind; Sinyavskiy, Oleg, Apparatus and methods for training path navigation by robots.
  24. Breitwisch, Matthew J.; Lam, Chung Hon; Modha, Dharmendra S.; Rajendran, Bipin, Area efficient neuromorphic system that connects a FET in a diode configuration, and a variable resistance material to junctions of neuron circuit blocks.
  25. Esser, Steven K.; Modha, Dharmendra S.; Ndirango, Anthony, Canonical spiking neuron network for spatiotemporal associative memory.
  26. Esser, Steven K.; Modha, Dharmendra S.; Ndirango, Anthony, Canonical spiking neuron network for spatiotemporal associative memory.
  27. Laurent, Patryk; Passot, Jean-Baptiste; Ponulak, Filip; Izhikevich, Eugene, Discrepancy detection apparatus and methods for machine learning.
  28. Alvarez-Icaza, Rodrigo; Arthur, John V.; Cassidy, Andrew S.; Jackson, Bryan L.; Merolla, Paul A.; Modha, Dharmendra S.; Sawada, Jun, Dual deterministic and stochastic neurosynaptic core circuit.
  29. Alvarez-Icaza, Rodrigo; Arthur, John V.; Cassidy, Andrew S.; Jackson, Bryan L.; Merolla, Paul A.; Modha, Dharmendra S.; Sawada, Jun, Dual deterministic and stochastic neurosynaptic core circuit.
  30. Sinyavskiy, Oleg; Polonichko, Vadim, Dynamically reconfigurable stochastic learning apparatus and methods.
  31. Modha, Dharmendra S.; Shenoy, Rohit S., Electronic learning synapse with spike-timing dependent plasticity using memory-switching elements.
  32. Modha, Dharmendra Shantilal; Shenoy, Rohit Sudhir, Electronic learning synapse with spike-timing dependent plasticity using unipolar memory-switching elements.
  33. Woo, Dong Hyuk; Narayanaswami, Ravi, Exploiting input data sparsity in neural network compute units.
  34. Nugent, Alex, Extensible adaptive classification framework.
  35. Ibarz Gabardos, Borja; Smith, Andrew; O'Connor, Peter, Feature detection apparatus and methods for training of robotic navigation.
  36. Nugent, Alex, Framework for the evolution of electronic neural assemblies toward directed goals.
  37. Nugent, Alex, Framework for the evolution of electronic neural assemblies toward directed goals.
  38. Passot, Jean-Baptiste; Sinyavskiy, Oleg; Ponulak, Filip; Laurent, Patryk; Gabardos, Borja Ibarz; Izhikevich, Eugene; Polonichko, Vadim, Hierarchical robotic controller apparatus and methods.
  39. Piekniewski, Filip; Polonichko, Vadim; Izhikevich, Eugene, Increased dynamic range artificial neuron network apparatus and methods.
  40. Commons, Michael Lamport, Intelligent control with hierarchical stacked neural networks.
  41. Izhikevich, Eugene M.; Laurent, Patryk; Richert, Micah; Petre, Csaba, Learning apparatus and methods for control of robotic devices via spoofing.
  42. Arthur, John V.; Merolla, Paul A.; Modha, Dharmendra S., Low-power event-driven neural computing architecture in neural networks.
  43. Nugent, Alex, Memristive neural processor utilizing anti-hebbian and hebbian technology.
  44. Nugent, Alex, Memristor apparatus.
  45. Nugent, Alex, Memristor apparatus with meta-stable switching elements.
  46. Hall, Dawn D.; Lamorey, Mark C. H.; Stamper, Anthony K., Method of forming micro-electrical-mechanical structure (MEMS).
  47. Nugent, Alex, Methods and systems for Anti-Hebbian and Hebbian (AHaH) feature extraction of surface manifolds using.
  48. Nugent, Alex, Methods and systems for feature extraction.
  49. Nugent, Alex, Methods and systems for fractal flow fabric.
  50. Nugent, Alex, Methods for performing anti-hebbian and hebbian (AHAH) based feature extraction of surface manifolds for compression.
  51. Coenen, Olivier; Sinyavskiy, Oleg; Polonichko, Vadim, Modulated stochasticity spiking neuron network controller apparatus and methods.
  52. Ludwig, Lester F., Molecular transistor circuits compatible with carbon nanotube sensors and transducers.
  53. Ludwig, Lester F., Molecular transistor driving of nanoscale actuators from differential amplifier circuits compatible with carbon nanotube sensors and transducers.
  54. Nugent, Alex, Multilayer training in a physical neural network formed utilizing nanotechnology.
  55. Ludwig, Lester F., Nanoelectronic differential amplifiers and related circuits having carbon nanotubes, graphene nanoribbons, or other related materials.
  56. Ludwig, Lester F., Nanoelectronic differential amplifiers and related circuits having graphene nanoribbons.
  57. Ludwig, Lester F., Nanoelectronic differential amplifiers and related circuits having graphene nanoribbons.
  58. Ludwig, Lester F., Nanoelectronic differential amplifiers and related circuits implemented on a segment of a graphene nanoribbon.
  59. Nowatzyk, Andreas Georg; Temam, Olivier; Narayanaswami, Ravi; Dasari, Uday Kumar, Neural network accelerator tile architecture with three-dimensional stacking.
  60. Temam, Olivier; Narayanaswami, Ravi; Khaitan, Harshit; Woo, Dong Hyuk, Neural network compute tile.
  61. Temam, Olivier; Narayanaswami, Ravi; Khaitan, Harshit; Woo, Dong Hyuk, Neural network compute tile.
  62. Narayanaswami, Ravi; Woo, Dong Hyuk; Temam, Olivier; Khaitan, Harshit, Neural network instruction set architecture.
  63. Narayanaswami, Ravi; Woo, Dong Hyuk; Temam, Olivier; Khaitan, Harshit, Neural network instruction set architecture.
  64. Narayanaswami, Ravi; Woo, Dong Hyuk; Temam, Olivier; Khaitan, Harshit, Neural network instruction set architecture.
  65. Oetringer, Eugen, Neural network, a device for processing information, a method of operating a neural network, a program element and a computer-readable medium.
  66. Akopyan, Filipp; Arthur, John V.; Manohar, Rajit; Merolla, Paul A.; Modha, Dharmendra S.; Molnar, Alyosha; Risk, III, William P., Neuromorphic event-driven neural computing architecture in a scalable neural network.
  67. Akopyan, Filipp; Arthur, John V.; Manohar, Rajit; Merolla, Paul A.; Modha, Dharmendra S.; Molnar, Alyosha; Risk, III, William P., Neuromorphic event-driven neural computing architecture in a scalable neural network.
  68. Hall, Dawn D.; Lamorey, Mark C. H.; Stamper, Anthony K., Normally closed microelectromechanical switches (MEMS), methods of manufacture and design structures.
  69. Hall, Dawn D.; Lamorey, Mark C. H.; Stamper, Anthony K., Normally closed microelectromechanical switches (MEMS), methods of manufacture and design structures.
  70. Ibarz Gabardos, Borja; Sinyavskiy, Oleg, Persistent predictor apparatus and methods for task switching.
  71. Laurent, Patryk; Passot, Jean-Baptiste; Sinyavskiy, Oleg; Ponulak, Filip; Gabardos, Borja Ibarz; Izhikevich, Eugene, Predictive robotic controller apparatus and methods.
  72. Laurent, Patryk; Passot, Jean-Baptiste; Sinyavskiy, Oleg; Ponulak, Filip; Gabardos, Borja Ibarz; Izhikevich, Eugene, Predictive robotic controller apparatus and methods.
  73. Friedman, Daniel J.; Kim, Seongwon; Lam, Chung H.; Modha, Dharmendra S.; Rajendran, Bipin; Tierno, Jose A., Producing spike-timing dependent plasticity in a neuromorphic network utilizing phase change synaptic devices.
  74. Friedman, Daniel J.; Kim, Seongwon; Lam, Chung H.; Modha, Dharmendra S.; Rajendran, Bipin; Tierno, Jose A., Producing spike-timing dependent plasticity in a neuromorphic network utilizing phase change synaptic devices.
  75. Friedman, Daniel J.; Kim, Seongwon; Lam, Chung H.; Modha, Dharmendra S.; Rajendran, Bipin; Tierno, Jose A., Producing spike-timing dependent plasticity in a neuromorphic network utilizing phase change synaptic devices.
  76. Coenen, Olivier, Proportional-integral-derivative controller effecting expansion kernels comprising a plurality of spiking neurons associated with a plurality of receptive fields.
  77. Brezzo, Bernard V.; Chang, Leland; Esser, Steven K.; Friedman, Daniel J.; Liu, Yong; Modha, Dharmendra S.; Montoye, Robert K.; Rajendran, Bipin; Seo, Jae-sun; Tierno, Jose A., Reconfigurable and customizable general-purpose circuits for neural networks.
  78. Brezzo, Bernard V.; Chang, Leland; Esser, Steven K.; Friedman, Daniel J.; Liu, Yong; Modha, Dharmendra S.; Montoye, Robert K.; Rajendran, Bipin; Seo, Jae-sun; Tierno, Jose A., Reconfigurable and customizable general-purpose circuits for neural networks.
  79. Brezzo, Bernard V.; Chang, Leland; Esser, Steven K.; Friedman, Daniel J.; Liu, Yong; Modha, Dharmendra S.; Montoye, Robert K.; Rajendran, Bipin; Seo, Jae-sun; Tierno, Jose A., Reconfigurable and customizable general-purpose circuits for neural networks.
  80. Laurent, Patryk; Passot, Jean-Baptiste; Izhikevich, Eugene, Robotic control arbitration apparatus and methods.
  81. Passot, Jean-Baptiste; Sinyavskiy, Oleg; Ponulak, Filip; Laurent, Patryk; Gabardos, Borja Ibarz; Izhikevich, Eugene, Robotic training apparatus and methods.
  82. Nugent, Alex, Self-evolvable logic fabric.
  83. Hunt, Jonathan James; Sinyavskiy, Oleg, Spiking neuron classifier apparatus and methods using conditionally independent subsets.
  84. Coenen, Olivier; Sinyavskiy, Oleg, Spiking neuron network adaptive control apparatus and methods.
  85. Izhikevich, Eugene M.; Laurent, Patryk; Polonichko, Vadim, Spoofing remote control apparatus and methods.
  86. Sinyavskiy, Oleg; Coenen, Olivier J. M. D., Stochastic apparatus and methods for implementing generalized learning rules.
  87. Kudritskiy, Andrey, System and method for viewing, modifying, storing, and running artificial neural network components.
  88. Nugent, Alex, System for AHAH-based feature extraction of surface manifolds.
  89. Breitwisch, Matthew Joseph; Cheek, Roger W; Lam, Chung Hon; Modha, Dharmendra Shantilal; Rajendran, Bipin, System for electronic learning synapse with spike-timing dependent plasticity using phase change memory.
  90. Sinyavskiy, Oleg; Coenen, Olivier, Systems and apparatus for implementing task-specific learning using spiking neurons.
  91. Yufik, Yan M., Systems and methods for a computer understanding multi modal data streams.
  92. Nugent, Alex; Molter, Timothy, Thermodynamic random access memory for neuromorphic computing utilizing AHaH (anti-hebbian and hebbian) and memristor components.
  93. O'Connor, Peter; Izhikevich, Eugene, Trainable convolutional network apparatus and methods for operating a robotic vehicle.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로