Catalyst system and method for the reduction of NO
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
B01D-053/56
B01D-053/94
B01J-008/00
B01J-019/00
출원번호
US-0242655
(2005-10-04)
등록번호
US-7431905
(2008-10-07)
발명자
/ 주소
Hancu,Dan
Male,Jonathan Lloyd
Redline,Jennifer Kathleen
Buddle,Stanlee Teresa
Rocha,Teresa Grocela
Palmatier,Alison Liana
Wood,Benjamin Rue
Rijssenbeek,Job Thomas
출원인 / 주소
General Electric Company
대리인 / 주소
Gallagher,Eileen W.
인용정보
피인용 횟수 :
17인용 특허 :
4
초록▼
A catalyst system for the reduction of NOx. is provided. The system comprises a catalyst in a first zone comprising a catalyst support, a catalytic metal comprising gallium, and at least one promoting metal selected from the group consisting of silver, gold, vanadium, zinc, tin, bismuth, cobalt, mol
A catalyst system for the reduction of NOx. is provided. The system comprises a catalyst in a first zone comprising a catalyst support, a catalytic metal comprising gallium, and at least one promoting metal selected from the group consisting of silver, gold, vanadium, zinc, tin, bismuth, cobalt, molybdenum, tungsten, indium and mixtures thereof; a catalyst in the second zone comprising a second catalyst support, a second catalytic metal selected from the group consisting of indium, copper, manganese, tungsten, molybdenum, titanium, vanadium, iron, cerium and mixtures thereof The catalyst system further comprises a gas stream comprising an organic reductant. The catalyst system may further comprise a catalyst in a third zone; the catalyst comprising a third catalyst support and a third catalytic metal selected from the group consisting of platinum, palladium, and mixtures thereof. A method for reducing NOx utilizing the catalyst system is also provided.
대표청구항▼
The invention claimed is: 1. A catalyst system for the reduction of NOx comprising: (i) a catalyst in a first zone; said catalyst comprising a first catalyst support, a first catalytic metal comprising gallium, and at least one promoting metal selected from the group consisting of silver, gold, van
The invention claimed is: 1. A catalyst system for the reduction of NOx comprising: (i) a catalyst in a first zone; said catalyst comprising a first catalyst support, a first catalytic metal comprising gallium, and at least one promoting metal selected from the group consisting of silver, gold, vanadium, zinc, tin, bismuth, cobalt, molybdenum, tungsten, indium and mixtures thereof; (ii) a catalyst in a second zone following said first zone; said catalyst comprising a second catalyst support, and a second catalytic metal selected from the group consisting of indium, copper, manganese, tungsten, molybdenum, titanium, vanadium, iron, cerium and mixtures thereof; and (iii) a gas stream comprising NOx and an organic reductant comprising oxygen or nitrogen; wherein the catalysts in the first zone and second zone are substantially separated from each other. 2. The catalyst system of claim 1, further comprising a catalyst in a third zone following said second zone; said catalyst comprising a third catalyst support and a third catalytic metal selected from the group consisting of platinum, palladium, and mixtures thereof; wherein the catalyst in the third zone is substantially separated from the catalyst in the second zone. 3. The catalyst system of claim 2, wherein said first catalyst support, said second catalyst support, and said third catalyst support independently comprise at least one member selected from the group consisting of alumina, titania, zirconia, ceria, silicon carbide and mixtures thereof. 4. The catalyst system of claim 1, wherein said first catalytic metal comprises gallium in a range of from about 5 mole % to about 31 mole %, based on total moles of first catalytic metal, promoting metal, and first catalyst support. 5. The catalyst system of claim 1, wherein said promoting metal is present in a range of from about 1 mole % to about 22 mole %, based on total moles of first catalytic metal, promoting metal, and first catalyst support. 6. The catalyst system of claim 1, wherein said organic reductant is selected from the group consisting of an alcohol, a hydroxy group, an alkoxy group, an ether, a carbonyl group, an ester, a carboxylic acid, an aldehyde, a ketone, a carbonate, an amine, a nitrile, an imine, and combinations thereof. 7. The catalyst system of claim 6, wherein said organic reductant is selected from the group consisting of methanol, ethyl alcohol, n-butyl alcohol, 2-butanol, tertiary butyl alcohol, n-propyl alcohol, isopropyl alcohol, dimethyl ether, dimethyl carbonate, acetonitrile, ethanolamine, propylene oxide, propylene glycol, methylamine, dimethylamine, and combinations thereof. 8. The catalyst system of claim 1, wherein said organic reductant and said NOx are present in a carbon: NOx molar ratio from about 0.5:1 to about 24:1. 9. The catalyst system of claim 1, wherein said gas stream further comprises water in a range of from about 1 mole % to about 12 mole %, based on total moles components in the gas stream. 10. The catalyst system of claim 1, wherein said gas stream further comprises oxygen gas in a range of from about 1 mole % to about 21 mole %, based on total moles components in the gas stream. 11. The catalyst system of claim 1, wherein NOx is present in effluent gas from a combustion source, said combustion source comprising at least one of a gas turbine, a steam turbine, a boiler, a locomotive, a transportation exhaust system, a diesel exhaust system, coal burning, plastics burning, volatile organic compound burning, a silica plant, or a nitric acid plant. 12. A catalyst system for the reduction of NOx comprising: (i) a catalyst in a first zone; said catalyst comprising a first catalyst support comprising alumina, a first catalytic metal comprising gallium present in an amount in the range of from about 5 mole % to about 31 mole %, based on total moles of first catalytic metal, promoting metal, and first catalyst support, and at least one promoting metal present in an amount in the range of from about 1 mole % to about 22 mole %, based on total moles of first catalytic metal, promoting metal, and first catalyst support, and selected from the group consisting of silver, gold, vanadium, zinc, tin, bismuth, cobalt, molybdenum, tungsten, indium, and combinations thereof; (ii) a catalyst in a second zone following said first zone; said catalyst comprising a second catalyst support comprising alumina, and a second catalytic metal selected from the group consisting of indium, copper, manganese, tungsten, molybdenum, titanium, vanadium, iron, cerium, copper and cerium, copper and manganese, copper and tungsten, manganese and tungsten, indium and cerium, and mixtures thereof; (iii) an optional third catalyst in a third zone following said second zone; said catalyst comprising a third catalyst support comprising alumina, and a catalytic metal selected from the group consisting of platinum, palladium, and mixtures thereof; and (iv) a gas stream comprising NOx and an organic reductant selected from the group consisting of methanol, ethyl alcohol, n-butyl alcohol, 2-butanol, tertiary butyl alcohol, n-propyl alcohol, isopropyl alcohol, dimethyl ether, dimethyl carbonate, acetonitrile, ethanolamine, propylene oxide, propylene glycol, methylamine, dimethylamine, and combinations thereof; wherein said organic reductant and said NOx are present in a carbon:NOx molar ratio from about 0.5:1 to about 24:1; wherein the first zone, the second zone and third zone are substantially separated from each other. 13. The catalyst system of claim 12, comprising the third catalyst in the third zone. 14. A method for reducing NOx, which comprises the steps of: (a) providing a gas stream comprising NOx and an organic reductant comprising oxygen or nitrogen; and (b) contacting said gas stream with a catalyst system, wherein said catalyst system comprises (i) a catalyst in a first zone; said catalyst comprising a first catalyst support, a first catalytic metal comprising gallium, and at least one promoting metal selected from the group consisting of silver, gold, vanadium, zinc, tin, bismuth, cobalt, molybdenum, tungsten, indium, and combinations thereof, and (ii) a catalyst in a second zone following said first zone; said catalyst comprising a second catalyst support, and a second catalytic metal selected from the group consisting of indium, copper, manganese, tungsten, molybdenum, titanium, vanadium, iron, cerium and mixtures thereof. 15. The method of claim 14, wherein said contacting is at a temperature in a range of from about 100�� C. to about 600�� C. 16. The method of claim 14, wherein said contacting is performed at a space velocity in a range of from about 5000 hr-1 to about 100000 hr-1. 17. The method of claim 14, wherein said catalyst system further comprises a catalyst in a third zone following said second zone; said catalyst comprising a third catalyst support and a catalytic metal selected from the group consisting of platinum, palladium, and mixtures thereof. 18. The method of claim 17, wherein said first catalyst support, second catalyst support and third catalyst support independently comprise at least one member selected from the group consisting of alumina, titania, zirconia, ceria, silicon carbide and mixtures thereof. 19. The method of claim 14 wherein said first catalytic metal comprises gallium in the range of from about 5 mole % to about 31 mole %, based on total moles of first catalytic metal, promoting metal, and first catalyst support. 20. The method of claim 14 wherein said promoting metal is present in a range of from about 1 mole % to about 22 mole %, based on total moles of first catalytic metal, promoting metal, and first catalyst support. 21. The method of claim 14 wherein said organic reductant is selected from the group consisting of an alcohol, a hydroxy group, an alkoxy group, an ether, a carbonyl group, an ester, a carboxylic acid, an aldehyde, a ketone, a carbonate, an amine, a nitrile, an imine, and combinations thereof. 22. The method of claim 21, wherein said organic reductant is selected from the group consisting of methanol, ethyl alcohol, n-butyl alcohol, 2-butanol, tertiary butyl alcohol, n-propyl alcohol, isopropyl alcohol, dimethyl ether, dimethyl carbonate, acetonitrile, ethanolamine, propylene oxide, propylene glycol, methylamine, dimethylamine, and combinations thereof. 23. The method of claim 14 wherein said organic reductant and said NOx are present in a carbon:NOx molar ratio from about 0.5:1 to about 24:1. 24. The method of claim 14 wherein NOx is present in effluent gas from a combustion source, said combustion source comprising at least one of a gas turbine, a steam turbine, a boiler, a locomotive, a transportation exhaust system, a diesel exhaust system, coal burning, plastics burning, volatile organic compound burning, a silica plant, or a nitric acid plant.
Okuda Norimasa,JPX ; Horiuchi Makoto,JPX, Catalyst for decomposition of nitrogen oxides and method for purifying diesel engine exhaust gas by the use of the catalyst.
Brey, Larry A.; Wood, Thomas E.; Buccellato, Gina M.; Jones, Marvin E.; Chamberlain, Craig S.; Siedle, Allen R., Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition.
Brey, Larry A.; Wood, Thomas E.; Buccellato, Gina M.; Jones, Marvin E.; Chamberlain, Craig S.; Siedle, Allen R., Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition.
Brey, Larry A.; Wood, Thomas E.; Buccellato, Gina M.; Jones, Marvin E.; Chamberlain, Craig S.; Siedle, Allen R., Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition.
Lewis, Larry Neil; Whisenhunt, Jr., Donald Wayne; Hancu, Dan; Mhadeshwar, Ashish Balkrishna; Winkler, Benjamin Hale; Norton, Daniel George; Siclovan, Oltea Puica; Yin, Ming, Manufacture of catalyst compositions and systems.
Siclovan, Oltea Puica; Norton, Daniel George; Lewis, Larry Neil; Hancu, Dan; Bao, Xiaoying; Burch, Robert; Hardacre, Christopher; Chansai, Sarayute, Method for preparing a catalyst composition suitable for removing sulfur from a catalytic reduction system.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.